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13.1 Introduction

In biological systems, function and malfunction ultimately originates from

interacting rather than isolated molecules. As such, most cellular processes are

carried out by multiprotein complexes,1 and the organization of the ensemble

of expressed proteins into functional units results in complex protein

interaction networks.2 Thus, protein–protein interactions (PPI) are a large

and important class of potential therapeutic targets.3,4

Currently, three classes of protein–protein interaction modulators (PPIM)

are known: (i) therapeutic antibodies, which are highly target-specific and

stable in human serum.5 As a downside, antibodies are not cell-permeable and

show a lack of oral bioavailability; (ii) peptides derived from protein–protein

interfaces (PPIF), which are applied as dimerization and interaction

inhibitors.6–11 However, poor metabolic stability and low bioavailability9
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limit their perspective for drug development; (iii) small-molecule PPIM,12–15

which are less likely to suffer from the above limitations. Although considered

almost impossible only a few years ago,16 a number of recent studies have

successfully demonstrated the application of (drug-like) PPI antagonists that

bind directly to a PPIF.3,12,17–19 In addition, inhibitors that influence PPI by

binding to allosteric sites have emerged as promising alternatives.20,21

Approaches towards the identification of small-molecule PPIM can be
classified into three general categories.17 In principle, these approaches

resemble those applied to find small-molecule inhibitors of ‘‘classical’’ (e.g.,

enzyme) targets. First, interface-derived peptides may aid as lead structures in

guiding the development of peptidomimetics.8,9 Second, screening of

(combinatorial) chemical libraries has proven successful in identifying small-

molecule PPIM in a number of cases,22–29 taking advantage of novel

techniques such as cell-based translocation assays,30 tethering,31,32 or

fragment-discovery approaches.33–35 Notably, although structural information

about the PPI to target was available in some of the cases, most of these

screens were initially performed on non-targeted libraries.17 Third, virtual

screening of databases is a viable approach for finding small-molecule PPIM.

However, this has been applied successfully only in a few cases to date

(Table 13.1).

Recent advances in the understanding of the energetics and dynamics of PPI

and methodological developments in the field of structure-based drug design

methods may open new avenues to apply virtual screening and rational design

approaches for finding small-molecule PPIM. These developments include (i)

computational approaches to dissect binding interfaces in terms of energetic

contributions of single residues (to identify ‘‘hot spot’’ residues), (ii) prediction

of potential binding sites from unbound protein structures, (iii) recognition of

allosteric binding sites as alternatives to directly targeting interfaces, (iv)

docking approaches that consider protein flexibility and improved descriptions

of the solvent influence on electrostatic interactions, and (v) data-driven

docking approaches. In this updated and extended review,36 we will describe

and summarize these recent developments with a particular emphasis on their

applicability to screen for or design small-molecule PPIM.

13.2 What Makes Protein–Protein Interfaces Difficult
to Target?

The challenge of identifying small-molecule PPIM in general and through

structure-based drug design methods owes much to the overall characteristics

of PPIF. Compared to active sites of enzymes, PPIF are typically flat and

devoid of deep binding sites for small molecules.37,38 In addition, the majority

of protein–protein complex interfaces are approximately 1600¡400 Å2 in
size,39–42 with an average of 22 buried amino acid residues per binding

partner.39 This amount of buried surface area upon protein–protein complex

formation greatly exceeds the potential binding area of small molecules.17
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Many PPIF also consist of non-contiguous regions in the primary protein

sequence, which makes it difficult to rationally design binding site mimetics.17

Furthermore, although smaller interfaces (,2000 Å2) usually form a single

epitope on the surface of each component protein, larger interfaces are

generally composed of multiple epitopes.43 In the latter case, many contacts

distributed over a large surface may be required to yield a potent PPI inhibitor,

as indicated by a synthetic mimic of a shallow, bowl-shaped protein surface

designed by Hamilton and co-workers.44

With respect to the amino acid composition of PPIF of proteinase–inhibitor

or antibody–antigen complexes, no difference was found in terms of polar,

nonpolar, and charged proportions compared to the composition of solvent-

accessible surface regions in general.39,40,45 In the case of large interfaces

(.5000 Å2), hydrophobic residues were more abundant, while polar residues

were more abundant in small interfaces (,1000 Å2).46 More specifically,

aromatic amino acids (in particular, tyrosine) were found most frequently

among the nonpolar residues,47 whereas arginine was more abundant than

aspartate, glutamate, and lysine in the case of charged amino acids.39 Thus,

given the general lack of differentiation in the amino acid composition of PPIF

compared to other protein surface regions, finding small-molecule PPIM that

preferentially bind to the former does not seem feasible at first glance.

The fact that PPIF were found to be mutually complementary with respect

to their electrostatic potentials led to the proposal that long-range electrostatic

interactions considerably influence binding to these epitopes.48 This has been

confirmed recently by identifying mutants of the b-lactamase inhibitor protein

that lie .7 Å apart from the binding partner, yet show a contribution to

binding by improving the overall electrostatic complementarity of the binding

partners.49,50 Likewise, libraries of closely related catalytic antibodies

generated by phage display revealed that ‘‘second sphere’’ residues (i.e.,

outside the active site) contributed favorably to both the binding of a

transition state analog and catalytic efficiency.51 Taking into account these

long-range interactions may therefore provide a general means to aid in the

design and tuning of binding interactions.

Several recent studies also point to the important role of water-mediated

interactions in PPIF.39,52,53 As such, it was shown that the close-packing found

for atoms buried in PPIF can be extended to the majority of all interface atoms

if solvent positions are taken into account.39 Water molecules thus contribute

to the close packing of atoms, which insures complementarity between the

binding partners. Similarly, by comparison of knowledge-based direct and

water-mediated contact potentials, partial solvation was found to be important

in stabilizing charged groups in PPIF.52 In fact, water-mediated polar

interactions are as abundant at interfaces as are direct protein–protein

hydrogen bonds, although the pattern of hydration varies between interfaces.53

On the one hand, water molecules that form a ring around ‘‘dry’’ interfaces

have been observed; on the other hand, ‘‘wet’’ interfaces may be permeated by

water molecules. Overall, these findings indicate that proper accounting for

Physico-Chemical and Computational Approaches to Drug Discovery rsabook4chapter13.3d 6/2/12 15:16:00

The Charlesworth Group, Wakefield +44(0)1924 204830 - Rev 7.51n/W (Jan 20 2003)

322 Chapter 13



effects of (de-)solvation and specific water-mediated interactions is necessary

for computational approaches towards the design and screening of small-

molecule PPIM to be successful.

Another important contribution to the observed complementarity in PPIF

arises from the inherent flexibility and plasticity of those regions.54–58

Conformational variability thereby leads to an ensemble of substates around

the native protein structure. The distribution of populations of these

conformational substates depends on binding or other physical influences.59,60

In view of small molecule-binding to PPIF, this leads to two implications.

First, small-molecule PPIM can ‘‘induce’’ striking conformational changes,

leading to grooves or pockets in PPIF that were not apparent in the unbound

structure. Structural evidence for such a binding site plasticity has been found

for Ro264550 binding to interleukin 2 (IL-2)3 (Figure 13.1). Given that

structural and thermodynamic studies further demonstrated that this portion

of IL-2 is inherently flexible, one can expect that ligand binding captured a low-

energy protein conformation instead of inducing a high-energy one.14,61 In

principle, it should be possible to detect these potential binding sites in the

unbound state by computational means, which may give a hint as to the

druggability of these interfaces. Above all, appropriately taking into account
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Figure 13.1 Pronounced plasticity observed in the PPI of interleukin 2 (IL2) upon
binding of the small-molecule PPIM Ro264550 (yellow) (magenta:
unbound IL2, PDB code 1m47; gray: bound IL2, PDB code 1m48). In
addition, a conformation extracted from an ensemble of unbound IL2
structures is shown (blue) that most closely resembles the bound protein
structure. The ensemble of unbound IL2 structures was generated by
constrained geometric simulation using an enhanced version of
FRODA176 (C. Pfleger, H. Gohlke, unpublished results).
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protein flexibility and plasticity in the process of small-molecule PPIM

discovery is mandatory. Second, a prevailing distribution of different receptor

conformations is also related to the functional adaptability of PPI partners.

Studies have shown that residues participating in interactions with multiple

binding partners often show a higher degree of flexibility and plasticity.54,62,63

This implies that also different PPIM should be able to bind to such regions,

leading to the notion that diverse molecule libraries need to be screened for

potential binders.64

Although some of the challenges imposed by the structural and dynamical

properties of PPIF also exist in the case of ‘‘classical’’ targets, the above

described characteristics led to the view that the development of small

molecules PPIM is difficult.12 However, a more optimistic viewpoint is

provided by energetic data on the stability of macromolecular complexes.

Analyses of protein–protein complexes versus protein–peptide complexes show

very similar thermodynamic behavior, despite considerable differences in the

interface sizes.65 Similarly, a ‘‘non-linear free energy’’ relationship with respect

to atomic properties has been found recently in an investigation of the stability

of macromolecular complexes, resulting in roughly constant binding free

energies of the tightest complexes, independent of the interface size.66 Both

observations support an early view67 that the actual interfaces that contribute

to binding (‘‘functional epitopes’’) have a similar size; these epitopes need to be

distinguished from the ‘‘structural epitopes’’ that are given by the overall

buried surface areas, which can vary considerably. Along these lines, extensive

‘‘alanine scanning’’ mutagenesis experiments in PPIF revealed that only a

small subset of amino acids (‘‘hot spots’’) within the overall interface

contribute significantly to the binding affinity.38,50,65,68–75 Recent structural

analyses of protein–protein surfaces76,77 further refined this picture such that

protein–protein associations are now viewed as locally optimized, with

clustered, networked, highly packed, and structurally conserved residues

contributing dominantly and cooperatively50,70,78,79 to the complex stability.80

These observations have far-reaching consequences for the discovery of

small-molecule PPIM: if only a small number of amino acids within a PPIF

provide the majority of the binding energy, it might not be necessary for small

molecules to cover an entire PPIF. Instead, mimicking the smaller ‘‘functional

epitope’’ should suffice for binding. This notion is not only supported by an

increasing number of studies describing a successful development of small-

molecule PPIM that bind in PPIF.13,14,17,18,29,81 The striking observation that

phage-display selections of small peptides82–85 not targeted for protein–protein

inhibition nevertheless bind at the protein hot spot indicates that these

interface regions are particularly prone to binding, even for small molecules.

13.3 Computational Hot Spot Detection

Given that convergent binding apparently correlates with hot spots, these

regions of PPIF should be considered primary targets for virtual screening or
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target-oriented combinatorial chemistry.86 Indeed, small-molecule mimics of

hot spots have been found to inhibit PPI, albeit with generally weak

affinities.44,87–89 Although a plethora of experimental alanine scanning data

exists for a wide range of PPI,90,91 it is advisable not to overinterpret the data

in terms of specific interactions between residues.86 This is based on the fact

that alanine mutations are perturbations to the free energy surfaces of the

unbound state of the protein, the bound state, or both. If it can be assured that

the mutation only influences the conformational ensemble of the complex (i.e.,

it has no effect on the unbound state), measured binding free energy differences

between mutant and wild-type protein can be related to specific contact

differences. It is for this reason that computational approaches for detecting

hot spots become increasingly important.92 Furthermore, these approaches can

be applied to predict hot spots also for (modeled or structurally known)

protein–protein complexes for which no experimental mutagenesis data is

available. A database, HotSprint, that collects computationally predicted hot

spots has been introduced recently.93

As for techniques based on first principles, computational alanine scanning has

been performed using the MM-PBSA approach94 to estimate the individual

contribution of each residue to the binding.95 Here, explicit molecular mechanical

energies are combined with continuum model-based solvation free energies (see

below) and estimates of vibrational entropy changes to probe PPI. These terms

are averaged over configurations of the molecular system obtained from high-

quality molecular dynamics (MD) simulations. Applied to the ‘‘classical’’

example of experimental alanine scanning, the human growth hormone–receptor

complex, the average unsigned error of calculated binding free energy differences

obtained by this approach was y1 kcal mol21.96 If a proper thermodynamic

cycle is employed, a full description of the structural and energetic consequences

of a mutation upon the unbound and bound state is obtained.96 However, this

requires repeating the MD sampling of the unbound mutant protein and the

mutated complex for each amino acid of interest, which is computationally

expensive. Hence, approximations to generate the mutant ensembles have been

introduced that only require the simulation of the wild-type proteins, which are

then post-processed to introduce either mutations to alanine95 or larger amino

acids.97 These methods provide a computationally inexpensive way of screening a

large variety of possible modifications on either side of the interface. An

approach along these lines is presented by Moreira et al.98 To identify hotspot

residues in PPIF, the molecular mechanics parmm94 force field and a continuum

solvation approach with different internal dielectric constant values, depending

on the type of amino acid, is used. After a MD simulation using a modified

Generalized Born (GB) solvation model, the post-processing of the complexes,

which follows a single-trajectory protocol, permits us to calculate effective

energies of the complex and the interacting monomers. Overall, a success rate of

80% in predicting hot spots (binding free energy difference .4.0 kcal mol21),

warm spots (binding free energy difference between 4.0 and 2.0 kcal mol21), and

null spots (binding free energy difference , 2.0 kcal mol21) was reported for three
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protein–protein complexes with 46 alanine mutations.98,99 Recently, the

CONCOORD/Poisson–Boltzmann surface area (CC/PBSA) approach100 has

been introduced, which mimics the MM-PBSA approach in general. However, in

contrast to MM-PBSA, a conformational ensemble of protein–protein complex

structures is generated using the CONCOORD program101 rather than MD

simulations. As a main advantage, protein flexibility is considered at a much

lower computational cost. When tested on alanine mutants for the interface

residues of the protein–protein complex Ras–RalGDS, however, a lower

predictive power of CC/PBSA compared to MM/PBSA was found (see also

below).102

As with experimental alanine scanning, the computational mimic inevitably

leads to perturbations of the system under consideration.86,103 In contrast,

non-perturbing alternatives to determine the contribution of each residue to

the binding free energy are provided by means of component analysis.104–107

Here, contributions of molecular mechanical energies and solvation free

energies are assigned to those atoms that participate in the respective

interaction. Summing over atoms of a residue then yields the contribution to

the binding free energy. Most importantly, these values are obtained without

the need to make structural modifications in the binding partners. It is noted,

however, that while the total binding free energy is a state function, free energy

components, in general, are not, and are sensitive to the decomposition scheme

chosen.108–110 We pursued a free energy decomposition for the Ras–Raf and

Ras–RalGDS protein–protein complexes recently.104,111 For the first time,

decomposition of the solvation free energy contribution was obtained by

applying a GB model (see below). Compared to an analogous decomposition

based on Poisson continuum electrostatics,105,107 the GB approach allowed us

to ‘‘screen’’ all residues of the binding partners at once, drastically lowering

computational demand. Convincingly, squared correlation coefficients of 0.55

and 0.46 are found for both systems when comparing the calculated

contributions to the binding free energy to experimentally determined binding

free energy differences for alanine mutants in the PPIF. Thus, the applied

decomposition scheme provides a means by which hot spots in PPIF can be

determined rapidly and reliably. In addition, by extending the analysis to all

residues of the binding partners, significant contributions to the binding free

energy can be identified for single residues as far apart as 25 Å from the

interface. This clearly indicates the presence of ‘‘actions-at-a-distance’’ in these

systems.

Computationally cheaper alternatives to the first principle-based methods

have been reported in terms of regression-based scoring functions that allow us

to predict binding energy hot spots in PPIF. Here, contributions due to van der

Waals and electrostatic energies, hydrogen bonds, water bridges, solvation free

energies, and variations of the protein flexibility are combined linearly. The

respective weighting factors of the energy terms are parameterized using a

dataset of stability changes measured for single mutations in different proteins.

In that respect, these functions resemble regression-based scoring functions for
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protein–ligand interactions, first reported 17 years ago.112 Widely used

approaches in that respect are FoldX113,114 and Robetta.115,116

Encouragingly, although parameterized on alanine scanning data of mono-

meric proteins only, these functions also perform well if applied to predict

alanine scanning results on protein interfaces, resulting in average unsigned

errors of 0.9113 and 1.1116 kcal mol21 between observed and calculated changes

in binding energy. Hence, although not explicitly parameterized on protein

interfaces, these functions seem to be general enough to also explain hot spot

phenomena. These functions have been used to computationally redesign PPI

specificity117 and to validate homology modeled complexes of Ras and effector

proteins.118 The contributions of the single energy terms may be analyzed in

more detail to better understand the thermodynamic characteristics of protein–

protein recognition. Two results stand out. First, taking into account the fine

details of the structure is crucial. In particular, explicitly modeling hydrogen

bond strengths in an environment-dependent fashion considerably enhances

the accuracy of hot spot predictions over the sole use of Coulomb electrostatics

with a distance-dependent dielectric116,119 (although it is noted that a more

sophisticated treatment of electrostatics120 may change this view). Second,

accounting for (changes of) protein flexibility improved predictions for some

complexes,113,116 although the restricted accounts of flexibility clearly show

limitations in more dramatic examples of interface plasticity such as the human

growth hormone-receptor interface.116

As a knowledge-based approach, DrugScorePPI is a fast and accurate

method102 for calculating relative binding free energies of Ala mutants in PPIF

with respect to the wild-type complexes. For DrugScorePPI, statistical pair-

potentials have been derived from 851 complex structures and have been

adapted against 309 experimental alanine scanning results. Available as a user-

friendly webservice, DrugScorePPI offers a fast and accurate prediction of

hotspot residues in PPIF. When applied to an external test set of 22 alanine

mutations in the interface of Ras–RalGDS, DrugScorePPI significantly

outperforms the CC/PBSA, FoldX, and Robetta methods with respect to

predictive power and performs as good as the MM/GBSA method, which had

been applied to a subset of 16 mutations.102 Similarly, Tuncbag et al.121

presented an empirical method that determines hot spot residues based on

residue conservation, solvent accessibility, and statistical pairwise potentials

for interface residues. Adjusted on 150 experimentally determined residues [58

(92) (non-)hot spot residues] and tested on an independent test set of 112

experimentally determined residues [54 (58) (non-)hot spot residues], they

observed an accuracy of 70% to match with the experimental hot spot residues.

The approach is available as a webserver, HotPoint.122

Finally, the machine-learning approach KFC for predicting hot spot

residues in protein interfaces has been presented by Darnell et al.123,124 It

uses a combination of two physics-based and knowledge-based models

characterizing shape specificity features (atomic density, residue size) and

biochemical contacts (atomic contacts, hydrogen bonds, salt bridges). KFC
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already shows a better predictive power than Robetta, as demonstrated for

training and test datasets of 16 protein complexes. Still, the combination of

KFC and Robetta’s alanine scanning, termed KFCA, results in a statistically

significant improvement in the accuracy of hot spot prediction with respect to

KFC.

13.4 Predicting Potential Binding Sites in Protein–
Protein Interfaces from Unbound Protein States

Although the discovery of interfacial hot spots led to the expectation that

small-molecule complements of these regions could attain sufficient binding

affinity, in many cases only micromolar inhibitors could be developed.89 In

turn, much more effective small-molecule PPIM have been found to bind to

well-defined clefts or grooves in the interface.3,38,42,89 Methods available for

cleft detection are, among others, POCKET,125 LIGSITE,126 LIGSITECSC,127

SURFNET,128 CAST,129 PASS,130 PocketPicker,131 Fpocket,132 and

PocketAnalyzer (C. Pfleger, T. Jimenez Vaquero, H. Gohlke, unpublished
results). Unfortunately, these clefts rarely occur in PPIF. However, in some

cases, small molecules that bind to clefts not observed in the unbound protein

could be identified experimentally.3,61,133 This clearly demonstrates that

inherent flexibility and plasticity is a hallmark of PPIF. Accordingly, detecting

clefts in unbound protein interfaces by computational means will provide

valuable starting points for the further rational design of small-molecule

PPIM.134

As recent studies suggest, biomolecular recognition processes and flexibility

(or changes of flexibility) of the binding partners are more fundamentally

interrelated than acknowledged by the classical models135 of ‘‘lock and key’’136

or ‘‘induced fit’’.137 As such, the ‘‘conformational selection’’ model60,138

proposes that proper conformations are ‘‘picked’’ by the binding from the

ensembles of rapidly interconverting conformational species of the unbound

molecules. This is supported by experimental evidence for the presence of

conformational variability of binding partners prior to their association,139

and yields an explanation as to why a single protein can bind multiple

unrelated ligands at the same site.64 This model also provides the foundation

for computational investigations of conformational fluctuations of the

unbound protein state, which may reveal conformational states adopted by

the bound proteins (see below).

MD simulations offer the most direct computational approach to address

the extent that conformational fluctuations of unbound proteins reflect the

conformational changes upon association. While initially only rotamers of key

side chains were investigated,140 a recent analysis of 11 proteins by at least 4 ns

long simulations has shown that a few key residues in protein interfaces
frequently sample their bound state and may be critical in the early recognition

of association.141 In a more extensive study on 41 proteins for which the three-

dimensional structures of bound and unbound state are known,142 about half
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of the short interface segments of unbound proteins were found to sample the

bound state during a 5 ns simulation. These findings are striking because even

in the absence of the binding partner, certain conformations of substructural

parts resemble already known bound states. However, in no case in the latter

study142 do the proteins as a whole fluctuate closer to the bound state than the

unbound state. This points to a limited sampling of adequate conformations

due to insufficient simulation times as a primary reason, and possibly to

inaccuracies of the underlying energetic descriptions of the systems.

Encouragingly, however, for the ‘‘classical’’ target aldose reductase, complexed

conformations of the protein could be identified from MD trajectories of the

unbound protein state,143 so predicting conformations of PPIF competent for

binding of small-molecule PPIM might be equally feasible.

As a viable alternative to MD simulations, normal mode analysis (NMA)144–146

and coarse-grained alternatives147–149 have re-emerged as powerful methods for

analyzing the dynamics of biomolecules from a structural perspective.150 Here,

an analytical solution to the equations of motions yields collective variables

(normal modes) that describe the dynamics of the system. It is particularly

interesting in view of predicting bound protein states from unbound ones in that

usually a small subset of low-frequency normal modes (in many cases, even a

single mode is sufficient) reliably describes the observed conformational

changes.151 One interpretation is that protein structures have evolved such that

biologically relevant motions near the folded state predominantly occur along

the directions of lowest-energy modes. Phrased differently, upon going from an

unbound to a bound state, proteins most readily explore directions linked to a

smooth energy ascent.149 This provides an explanation as to why bound

conformations may already exist in the ensemble of unbound proteins, as

proposed by the ‘‘conformational selection’’ model. From a practical point of

view, NMA is accordingly applied to identify potential conformational changes

of proteins upon binding.148,152,153 Macromolecular conformations generated

through NMA may then be used in docking algorithms that account for protein

flexibility.154,155 We note, however, that due to the harmonic approximation

inherent to NMA, transitions from one local minimum to another one are

neglected by the method. This becomes particularly important for more

localized motions that have been observed in the case of PPIF plasti-

city.3,55,156,157 For this case, hybrid MD/NMA techniques158 may be valuable,

combining low-frequency modes from NMA, which describe the collective

motions of the protein, with MD, which in turn accounts for more localized

motions. That way, large-scale conformational changes of the system are

amplified by the modes, while the MD contribution allows to escape the local

minimum near the starting structure.

Constrained geometric simulation (CGS) is a computationally very efficient

approach to model large-scale conformational changes in proteins. This

approach considers all atoms of the macromolecule and is not restricted to

exploring only the minimum near the starting structure.159–161 CGS is based on

flexibility concepts162,163 that allow for the efficient and accurate location of
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rigid and flexible regions within a macromolecule from a single, static

structure. Here, 3D molecule-like bond networks (where bonds originate from

covalent as well as non-covalent interactions in the protein) are analyzed with

respect to the bond-rotational degrees of freedom.164 This concept has been

successfully applied to identifying collectively and independently moving

regions in a series of proteins164 or determining the change in protein flexibility

upon protein–protein complex formation.165 Coupled networks of covalent

and non-covalent bonds within the protein are then used as input to two

computational methods that explore the internal mobility of proteins.

Thereby, the coupled bond network in the protein is preserved, and van der

Waals overlaps are avoided. In the first method (ROCK),159,160 correlated

motions in flexible protein regions are explored by random-walk sampling of

rotatable bonds, thereby leaving rigid regions undisturbed. In the second

method (FRODA),161 rigid protein regions are replaced by so-called ghost

templates, which are then used to guide the movements of protein atoms. In

both cases, generated protein conformations compare favorably with

conformational ensembles determined by NMR.

As an application of CGS to identifying potential binding sites in PPIF, an

enhanced version of FRODA was used to generate a conformational ensemble

of the unbound state of IL-2 within a few hours on a single processor (C.

Pfleger, H. Gohlke, unpublished results). IL-2 shows a pronounced interface

plasticity upon binding of Ro264550.3 As depicted in Figure 13.1, a

conformation very similar to the one found in the bound IL-2 can be identified

from these simulations. Unbound IL-2 is thus able to sample bound states even

in the absence of the ligand. As this example indicates, these types of

simulations may provide an efficient starting point for investigating the

conformational variability of PPIF. For a successful prospective prediction of

druggable clefts, the simulations need to be combined with screening for

energetically accessible protein conformations and a geometrical detection of

indentations in the interface region.

CONCOORD101 is another method to predict protein flexibility based on

geometrical considerations. Again, covalent and non-covalent interactions

within the structure are translated into a set of geometrical constraints, which

provides the starting point for the generation of an ensemble of new

conformations. Using principal component analysis, the ‘‘essential’’ degrees

of freedom of the structure can then be extracted from the ensemble.

tCONCOORD166 is a reimplementation of the CONCOORD method.

Recently, Eyrisch et al. presented a protocol for identifying transient pockets

in PPIF of BCL-XL, IL-2, and MDM2 by applying the PASS algorithm130 to

MD snapshots.133 In a second study, Eyrisch et al. showed that backbone

movements and side-chains dynamics are important for transient pocket

formation in protein interfaces.167 When comparing transient pocket detection

based on CONCOORD-, tCONCOORD-, and NMA-generated ensembles,

only tCONCOORD was able to generate as many and as large pockets as

obtained by MD simulations.167
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13.5 Allosteric Binding Sites as Alternative Targets for
Modulating Protein–Protein Interactions

Peptidic and synthetic mimics of protein surfaces and small-molecule PPIM

targeting PPIF provide the most direct approach to disrupt PPI. In a more

indirect way, allosteric mechanisms have been exploited as promising targets

for modulating PPI, especially for cell-surface receptors.20,38,168 Here, allosteric

drugs modulate receptor activity through conformational changes in the

receptor protein that are transmitted from the allosteric site to the effector

coupling site. More specifically, allosteric modulators enrich certain subsets of

conformations available to the protein in the global conformational

ensemble60,138 that differ in their biological binding/signaling properties.20,169

This reinforces the role of protein dynamics as an entropic carrier of free

energy of allostery.139,170–172

At least three advantages of allosteric PPIM over ‘‘direct’’ ones have been

pointed out:20 (i) the effect of allosteric modulators is saturable and less prone

to overdosing; (ii) allosteric modulators can selectively tune responses only in

tissues in which the endogenous agonist exerts its physiological effects; (iii)

allosteric modulators have the potential for greater receptor subtype

selectivity, based either on a mechanism related to the location of the allosteric

sites or different degrees of cooperativity exerted by a modulator at each

subtype. In the case of PPI, an additional advantage is that allosteric

modulators need not bind at difficult-to-target PPIF regions but can address

more pronounced binding sites either between protein subunits or in the

interior of a protein.

The discovery of new allosteric sites is a challenging prerequisite to the

rational development of allosteric PPIM. Several new allosteric sites have been

identified by experimental means,173 e.g. in glycogen phosphorylase,174 protein

tyrosine phosphatase 1B,175 and HIV-1 reverse transcriptase.176 The techni-

ques applied include traditional high-throughput screening followed by X-ray

crystallography, phage display with crystallography, and tethering.177

As an alternative to experiment-led discovery, several computational

methods have demonstrated their capability to predict allosteric sites. In

evolutionary trace analysis (ETA),178,179 sequence and structural data are

combined to infer the location of functional sites in proteins. Here, members of

a protein family are first divided into functional classes based on their sequence

identity tree. Then residues that are invariant within each class but vary among

them are identified and mapped onto a representative structure. A cluster of

these class-specific residues on the protein structure implies an evolutionarily

privileged site that is responsible for the functional specificity of the individual

family members. The method was applied to the family of regulator of G

protein signaling (RGS) proteins,180 which interact with G protein a subunit

(Ga) proteins. A novel functional surface located next to but distinct from the

interface between RGS and Ga was identified. Subsequent mutagenesis

experiments181 and crystal structure data182 confirmed this surface to be the
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interaction site for binding of the G protein effector subunit PDEc.

Interestingly, since some of the surface residues had profound effects on the

regulation of Ga activity by PDEc but did not directly interact with Ga, a form

of allosteric communication among these residues was inferred.

The ETA exploits evolutionary information about individual residues to

identify functional/allosteric protein sites. However, a hallmark of allosteric

interaction is that it occurs between topographically distinct binding sites; this

requires a reliable propagation of signals originating at the allosteric site to the

functional one. Hence, if long-range ‘‘through-space’’ interactions can be

neglected, the signal flow must proceed via a physically connected network of

residues that link both sites. The statistical coupling analysis (SCA)79 detects

such coupling between two sites in a protein by analyzing the co-evolution of

these positions in large and diverse multiple sequence alignments of a protein

family. Applied to G-protein coupled receptors, the chymotrypsin class of

serine proteases, hemoglobin, guanine-nucleotide-binding proteins, and RXR

nuclear receptors, evolutionary conserved sparse networks of amino acid

interactions could indeed be identified as structural motifs for allosteric

communication in proteins retro- and prospectively.183–185

For a successful application of SCA, sub-alignments of members of a

protein family of sufficient size and diversity are required so that coupling

observed between sites reflects evolutionary constraints during evolution and

not just historical relationships.185 In those cases where the sequence

information is insufficient for SCA but structural information about the

protein is available, cooperative networks of residues within proteins can be

predicted by the COREX approach.186–188 Here, a large number of different

conformational states of a protein are generated through the combinatorial

unfolding of a set of predefined folding units. The correlation between the

folding states of two residues then indicates the mutual susceptibility of each

residue to perturbations at every other site, which in turn reveals the energetic

coupling between those residues. Taken one step further, correlations between

binding sites as a whole and the rest of the protein can be identified in addition

to the pairwise residue correlations. Notably, the analysis of energetic

couplings in dihydrofolate reductase revealed that perturbations at one site

do not necessarily propagate through structure to the other site via a series of

conformational distortions. Instead, perturbations exert an influence by

affecting the distribution of folded and unfolded states in the ensemble,

reinforcing the influence of dynamics on allosteric modulation.189

Although the described methods are exciting means to rationalize

intramolecular communication, only a few allosteric sites predicted de novo

have been reported so far.173 Even if structural protein information is

available, locating such sites is hampered by the fact that in many cases some

degree of conformational adaptation is required for binding the allosteric

modulator. Hence, potential allosteric binding sites may not be readily

detectable in the unbound receptor from geometric considerations alone.

However, additional structural features might provide a hint to the possibility
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of opening up a binding site. This is demonstrated by the rather extreme

example of inhibitor binding to the highly packed core region between helices

11 and 12 of b-lactamase (Figure 13.2).61 Here, unfavorable w/y angles of

Leu220 located at the N-terminal end of helix 11 suggest conformational strain

in the unbound structure, which may be relieved upon complex formation and

then counterbalances the energetic cost of core disruption. In addition, a

COREX analysis predicts the revealed binding site region to be relatively

unstable.56 Together, these observations suggest that helices 11 and 12,

although well-packed, are more prone to an induced-fit adaptation than other

core regions. Finally, the most compelling evidence for the existence of the

cryptic site comes from the binding of a crystallization agent in the same site of

a homologous b-lactamase structure.190 Taken together, perhaps the most

promising way to predict new allosteric sites is by, first, obtaining suggestions

for potential sites from ‘‘crystallization artifacts’’ or already known ligands

binding to related protein structures and, subsequently, confirming these

potential allosteric sites computationally.

Finally, ‘‘interfacial inhibition’’ through uncompetitive inhibition has been

elucidated recently191–193 as another natural paradigm for interfering with
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macromolecular interactions. Here, targets are captured in dead-end com-

plexes that are unable to complete their biological function. These

intermediates display deeply curved surfaces with unbalanced energetic

characteristics that are targeted by the inhibitor. However, such conditions

are less likely to occur in the unbound proteins or completely bound

complexes, and predictions of intermediate complex states as a prerequisite for

identifying such sites are generally beyond current computational capabilities.

13.6 Docking for Targeting Protein–Protein Interfaces

Once potential binding sites have been identified, performing docking

experiments or virtual screening (VS) is the next step in computer-aided drug

development. In particular, this holds for PPI as a new class of targets because

no large collections of known ligands may be available to successfully apply

ligand-based approaches. Methodologically, current docking approaches face

two main difficulties: dealing with solvent effects and protein flexibility. The

impact of this situation on targeting PPI along with recent progress is discussed

below.

13.6.1 Improved Descriptions of Solvent Effects

In the case of ‘‘classical’’ enzyme targets, a large number of successful

applications of docking in VS has been reported.194 By and large, these

successes have been facilitated by steric constraints imposed by well-defined

deep cavities that exist in these targets.195 In such cases, the description of the

complex energetic contributions to molecular recognition can be simplified. In

fact, neglecting solvent effects on electrostatics did not have a significant effect

on the success of some computer-aided drug-design programs.194,196 However,

a proper description of electrostatics is important in the case of PPIF, which

are typically flat compared to enzyme targets. The effect of water on

electrostatic interactions is twofold: it screens direct charge–charge interac-

tions, and it solvates polar/charged groups.

Dealing thoroughly with solvent effects requires considerable computational

resources. However, recent algorithmic developments together with increasing

computational power now allow for a much more rigorous treatment of

electrostatics. In particular, continuum models, which treat the solvent as

being structureless, are now widely applied in computational biophysics.197 In

this approximation, Poisson’s equation (PE) rigorously describes the electro-

statics of a system consisting of a solute modeled as a distribution of charges in

a low dielectric medium immersed in a high dielectric medium (typically

water). In general, the PE can only be solved numerically for arbitrarily shaped

molecules using, for example, finite difference techniques.198 In order not to re-

solve the PE for every newly generated conformation in docking, Arora and

Bashford199 have introduced the Solvation Energy Density Occlusion (SEDO)

approach. Here, the system is represented in terms of a solvation energy
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density that is pre-computed for receptor and ligands prior to starting the

docking simulation. Upon binding, the interacting region of both counterparts

changes from a high dielectric medium to a low dielectric one. By neglecting a

charge density rearrangement in the remaining high-dielectric region, one then

only has to subtract the contribution arising from the newly occluded areas in

the complex, which pays off a great gain in efficiency. The methodology was

tested on two different data sets: a series of MHC class I protein–peptide

complexes, and a congeneric series of HIV-1 protease–ligand complexes. The

complexes with the small ligands of the HIV-1 protease yielded slightly better

results than the peptides with the MHC class I protein, but all of them were in

very good agreement with the results obtained when a non-modified PE

approach was followed.

When a docking simulation runs, every new ligand conformation has to be

evaluated. Practically, the scoring function complexity and implementation

must be efficient. In this regard, the SEED approach by Majeux et al.200

introduces an appealing treatment of the electrostatic contribution to the total

binding free energy. Two important approximations are made. First, a simple

distance-dependent dielectric model for the screened ligand–receptor interac-

tion is used. Second, for both receptor and ligand, the main contribution to

desolvation is considered to come from the removal of the first shell of

water.201 Totrov202 has estimated that the first solvent layer contributes 66% to

the total desolvation energy. Considering this, the receptor and ligand

molecules are independently mapped onto a grid, and the corresponding

desolvation is pre-computed at the centers of low dielectric probe-spheres

rolled over the solvent accessible surface. This computation is done according

to the Coulomb approximation of the electric displacement. During docking,

only occluded areas in both counterparts have to be detected and summed to

assess the total contribution. The approach was validated against solutions of

the PE, showing very good correlations for every single contribution and the

total electrostatic energy. The oncoprotein MDM2 was targeted to investigate

the virtues of this approach. MDM2 binds to the p53 tumor suppressor,

keeping it inactive.203 1,4-Benzodiazepines and dibenzocyclohexane were

found computationally to yield the best binding energies. However, to our

knowledge, these findings have not been validated experimentally.

The GB model is an approximation to the PE approach.204 Here, space is

also divided in regions of high (solvent) and low (solute) dielectric, but the

reaction field energy is approximated by a pairwise sum over interacting

charges. From the original Born theory, the electrostatic contribution to the

free energy of solvation of a point charge q located in the center of a spherical

cavity of radius R (Born radius) is given by eqn (13.1):

DGpol~{
1

2
1{

1

e

� �
q2

R
ð13:1Þ

where e is the dielectric permittivity of the medium.
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The term ‘‘generalized’’ comes into play when considering more than two

point charges and arbitrarily shaped cavities instead of spherical ones. Then, a

smooth function that considers charge–charge interactions according to their

location in the solute is required. To date, the formulation proposed by Still et

al.204 is the most widely used one to estimate solvation energies in this

situation. An important parameter in the formulation is the effective Born

radius, which measures the burial of an atom in the low-dielectric medium and

depends on the atom’s intrinsic Born radius and the arrangement of the rest of

the atoms in the system. The way of estimating R has implications not only in

terms of accuracy, but also in terms of efficiency. The different flavors of GB

currently in use arise mainly from the way of defining and computing this

parameter. The accuracy and efficiency of a variety of GB models for

computing electrostatic solvation energies in comparison with the more

rigorous PE model has been assessed by Feig et al.205 The latest GB models

yield results comparable to PE, although efficiency is still a concern for those

models. A more in-depth review on GB models is available.206

Zou et al.207 incorporated a GB model into DOCK.208 In a further

development of the ideas in this work, Liu et al.209 have recently incorporated

the more efficient, yet arguably less accurate, pairwise approximation

proposed by Hawkins et al.210 that takes into account atomic overlaps to

compute Born radii. Despite the limited data set of only three systems used for

the evaluation, acceptable results are obtained for the Born radii, considering

the gain in efficiency (y8% of error for the receptor and 4% for the ligand).

More interestingly, the GB enhanced scoring scheme performs better than the

standard ‘‘force field’’ scoring function in DOCK in a VS experiment. This

has, in fact, an important implication as these kinds of computational

screenings are now commonplace in the early stages of current drug-design

programs and suffer from high rates of false positives. Additionally, this re-

implementation of the GB model into DOCK introduces a correction to

properly treat possible void formations between the protein and ‘‘misaligned’’

ligands. This is one of the most problematic aspects of GB models: the

boundary definition by means of spheres between solvent and solute may result

in solvent-inaccessible, yet high-dielectric, voids in the interior of large

biomolecules.206 Interestingly, successful VS studies implementing these

improvements in DOCK have been reported for glyceraldehyde-3-phosphate

dehydrogenase,211 lysosomal cysteine proteases,212 and a PDZ protein

interaction domain213 as targets.

Aside from GB, other implicit solvation models have been adapted in some

popular docking programs as a compromise between the required accuracy

and the affordable computational effort.214 In that respect, a particularly

efficient implicit solvation model for computing the electrostatic part of the

binding free energy in protein–ligand docking has been introduced recently.215

With a similar performance in accuracy as GB, the mean pose calculation time

by this model amounts to about 40 ms. On the other hand, when facing rather

large VS experiments, it is now commonplace to follow a hierarchical
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approach216 where candidate compounds are pre-screened and selected with

simpler scoring functions. This reduced database is subsequently re-ranked

with more accurate approaches such as MM-PBSA.217 Very encouragingly, by

employing a modified protocol which includes using a GB model during the

MD simulations, a very efficient PE solver, and a computational design based

on a distributed-computing paradigm, a high-throughput variant of MM-

PBSA has been introduced.218 With this variant, more than 300 compounds

were evaluated against three different targets overnight, using approximately

400 desktop computers.219 As for the accuracy, statistically significant

correlations to experimental data were obtained, with correlation coefficients

.0.72.

13.6.2 Protein Flexibility in Protein–Ligand Docking

Proteins are inherently flexible, which provides the origin for their plasticity

and enables them to conformationally adapt to a binding partner. However,

current docking-based drug-design approaches generally treat the target

protein as a rigid unit. Following this approximation, better results in VS

experiments have been obtained when target structures extracted from

complexes were used compared to ‘‘apo’’ structures.220 On the other hand,

‘‘holo’’ structures appear to introduce a bias in the experiment which, in many

cases, precludes finding chemically novel ligands.221 If the adaptability of

binding sites in enzymes is a real concern, taking into account protein

flexibility appears even more critical in the case of PPIF, as they have been

proven to be highly adaptive,14 as discussed above.

From a practical point of view, challenges of incorporating protein

flexibility into docking are twofold: first, one needs to detect what is

flexible,222 and second, this knowledge needs to be transformed into the

docking algorithm. With respect to the former, options range from using

experimental information to predicting the most relevant movements through

computational methods such as MD, NMA, or a graph-theoretical

approach.164 The latter issue is in general far more open to creative approaches

but must be guided by the unavoidable concern about efficiency.

13.6.2.1 Determining What is Moving and How

Protein flexibility comprises a range of possible movements, from single side-

chains to drastic structural rearrangements as seen in calmodulin.223

Depending on where the binding site is located, one or more of these

movement types will be relevant for docking. Interestingly, a recent study by

Zavodszky and Kuhn224 assessed, for a large set of typical enzymatic targets,

to what extent side-chain rotations of amino acids contribute to the flexibility

within the binding site. Ligands from 63 different complexes comprising a total

of 20 different enzymes were re-docked into the corresponding apo structure

using their docking program SLIDE225 that allows for protein side-chain
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rotations. These side-chain rotations were proven to be necessary to correctly

dock 54% of the ligands, but encouragingly, 95% of the rotations were smaller

than 45u. The plausibility of every adaptation proposed by SLIDE was then

evaluated by comparing the free with the resulting bound structures and by

analyzing the geometry with PROCHECK.226 Only 7% of the conformations

were evaluated as unfavorable. Previously, Najmanovich et al.227 had shown

that there is no correlation between backbone and side-chain flexibility. They

reported as well that rotations in side chains of up to three residues account for

y85% of all the cases where there is a conformational change upon ligand

binding. For the case of PPI, it has been shown that the conformational change

can be even more important for those residues involved in the interface.228

Having the whole dynamic picture of a protein in hand would be the optimal

situation to deal with the protein’s flexibility. Although this is not the case for

most of the interesting targets, there is hope that one can predict stable

conformers even from the unbound structure due to the fact that the bound

conformation is likely to be a pre-existing one in the free state229 (see Section

13.4).

In summary, it is encouraging to see that with little effort much can be

gained: many changes will be related only to side chains. Even more, our

understanding of protein dynamics has enabled unbound structures as useful

starting points for flexible docking. However, the challenge remains in

considering every movement that occurs in the binding, independent of its

range. In what follows, three approaches to predict flexible regions in proteins

are described: automated conformation exploration restrained by experimental

knowledge, derived from MD simulations, and through NMA.

Cavasotto and Abagyan155 incorporated a receptor-ensemble docking

approach in the frame of the IFREDA (ICM-flexible receptor docking

algorithm) method for VS. The first step of this involves the de novo generation

of alternative receptor conformations. Four protein kinases subfamilies were

investigated. Forty random configurations of a ligand were generated in the

binding site. The ligand, side chains in the binding site, and pre-selected loops

known to undergo rearrangements are considered fully flexible. An in vacuo

minimization is performed followed by a stochastic energy minimization and a

final full minimization of the top ranked conformations. In this way, the area

considered as flexible is enlarged, which yields plausible receptor conforma-

tions that are relevant for the binding site. Yet, the requirement for an

exhaustive sampling is avoided. However, a drawback of the method is that

flexible protein regions must be known in advance.

Zacharias230 has proposed to use MD to study the movements of the protein

before docking. From the MD one can calculate soft flexible degrees of

freedom via principal component analysis; these soft modes can be afterwards

incorporated into a flexible docking algorithm as additional variables to guide

the movement of the protein. As only Ca atoms are considered, side-chain

movements are not represented by the precalculated modes. However, the

method has still proven useful in VS for pre-filtering databases because it is not
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very computationally demanding. The author was also able to achieve

successful docking results starting from an unbound protein structure where

the ligand did not fit sterically. The method has the advantage that the

explored protein conformations are fairly realistic, including solvent and

counterion effects. In an attempt to also consider side-chain flexibility,

Tatsumi combined MD with harmonic dynamics.231 Collective movements are

incorporated into the motion of Ca atoms by means of harmonic modes,

whereas the motions of all other atoms are simulated by unbiased MD. This

method is theoretically appealing, although inefficient, as one single docking

takes 40 days of CPU time (using up to 16 CPUs in parallel).

NMA is a convenient and widespread method to study the dynamics of

macromolecules in cases where only one structure is available (see above).

Information about low-frequency normal modes are increasingly incorporated

into docking procedures.155,230 The aforementioned IFREDA, which needs

information about side chains and backbone movements, was extended in that

respect.155 From NMA, ‘‘relevant modes’’ are selected, and protein structures

are subsequently modified following them. The ‘‘relevant modes’’ are a means

of focusing the general analysis to the binding site region, such that those

modes that influence binding site atoms are selected. Although these are low-

frequency modes, they do not correspond exactly with the lowest ones, so that

intermediate-scale loop motions that might occur around the binding site are

also captured. The methodology was validated by docking ligands into apo

structures, where rigid-receptor docking had failed. Also, a small-scale VS

showed larger enrichment factors than when performed with the rigid

receptors.

Recently, we have developed a multi-scale modeling approach that combines

concepts from rigidity theory, elastic network theory, and constrained

geometric simulations. The approach is able to accurately predict protein

conformational changes in three steps.152,232 In the first step, the molecule is

decomposed into rigid clusters using the FIRST approach.164 Importantly, the

composition of these clusters is not limited to residues adjacent in sequence or

secondary structure elements. Instead, residues that are distant in primary

sequence but close in the 3D structure may also be comprised in one cluster. In

the second step, clusters are treated as rigid bodies, and the motions of these

clusters are predicted by RCNMA (Rigid Cluster Normal Mode Analysis)

using an elastic network representation of the coarse-grained protein. When

applied to 10 proteins that show conformational changes upon complex

formation, directions and magnitudes of the motions predicted by RCNMA

agree well with experimentally determined ones, particularly if the movement is

dominated by loop or fragment motions. In the last step, the NMSim module

generates new conformers of the macromolecule using low-energy normal

mode directions, predicted by RCNMA, and random direction components.

The generated conformers are then iteratively corrected regarding steric clashes

and constraint violations in order to generate stereochemically allowed

conformations that lie preferentially in the subspace spanned by low-frequency
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normal modes. The NMsim approach was validated on hen egg white

lysozyme (HEWL). For this, experimentally determined structures and

conformations from state-of-the-art MD simulations233 were compared to

conformations determined by FRODA,161 CONCOORD,234 and NMSim.

Regarding residue fluctuations, NMSim results show a good agreement with

those from MD simulations and experimental structures. With respect to the

stereochemical quality, NMSim-generated structures have backbone torsion

angle characteristics that are in remarkable agreement with the characteristics

of 100 high-resolution experimental structures.

13.6.2.2 Incorporating Flexibility to Docking Algorithms

Once the dynamic properties of the protein are known, incorporating this

information is the next challenge in algorithmic development. Comprehensive

reviews on methods to deal with flexibility in docking have been

published.155,222,235,236 The main concern in this step is computational

efficiency. If a number of conformations is known either from experiment or

calculation, a trivial solution is to run a parallel docking against every

structure.237 The main potential drawback is that the dynamic picture might

not be complete, and some relevant conformations might not be present.

Running parallel dockings with all available structures is generally

affordable when the number of structures to consider is small. An interesting

alternative to incorporate flexibility in a mean-field sense was accomplished

within Autodock238,239 by Österberg et al.240 Using a grid-based approach for

evaluating the interaction energy between ligand and receptor, they followed

different strategies to combine representations of multiple target structures by

merging their individual interaction energy grids. Taking either minimum

values or potential averaged grid values did not perform well. In turn,

weighting different grids according to a Boltzmann distribution assumption

yielded the best results. The approach was evaluated on 21 complexes of

peptidomimetic inhibitors with human immunodeficiency virus type 1 (HIV-1)

protease, and they were able to correctly dock 20 of them using the weighted

maps. As a drawback of the method, merging grid representations of different

receptor conformations into one may lead to the situation where mutually

exclusive combinations of receptor conformations are present. It can also be

expected that the method reaches its limits in cases of larger protein mobility.

The latest AutoDock version, AutoDock4,241 also allows us to consider the

flexibility of receptor side-chains explicitly. When tested in a redocking

experiment with 188 diverse protein–ligand complexes, successful dockings

were reported for complexes with 10 or less torsional degrees of freedom. In a

cross-docking experiment with 87 HIV protease complexes, adding side-chain

flexibility overall leads to more successful docking results but also raises

problems like increased computational costs and an increased potential for

false positives because of the larger search space. Another docking algorithm,

FlipDock,242 performs automated docking of flexible ligands into flexible

Physico-Chemical and Computational Approaches to Drug Discovery rsabook4chapter13.3d 6/2/12 15:16:27

The Charlesworth Group, Wakefield +44(0)1924 204830 - Rev 7.51n/W (Jan 20 2003)

340 Chapter 13



receptors, using the AutoDock force field. To represent ligand and receptor

flexibility, a special data structure, the Flexibility Tree (FT),243 is used.

FlipDock was tested on 400 cross-dockings and showed a docking success rate

of 93.5%, which compares favorably to the rate by AutoDock3.0 of 72%.

An alternative to the strategies of AutoDock to cope with protein mobility is

to work explicitly with known (or predicted) conformations of the protein, but

in a way that is more computationally efficient than trivially running several

dockings in parallel. FlexE244 incorporates a united protein description that

handles similarities and differences in the ensemble of conformations.

Structures are initially superimposed by backbone atoms. Then, united

structures are created by combining the alternative side-chain conformations

and backbone parts. A united structure is composed of instances, that is,

conformationally different substructures. These structures are then used in an

incremental docking approach. The ligand is placed fragment by fragment into

the active site and possible interactions between the ligand and all instances are

determined. In the final step, contributions from all instances are summed,

whereby mutually incompatible instances are discarded in order to retain

realistic protein structures. As there are several possible combinations of

independent instances at each construction step, finding high-scoring

independent sets of instances is the most time consuming step of the whole

procedure. The authors report an improvement compared to running parallel

dockings and merging the results (67% of the best-ranked solutions below 2.0

Å vs. 63%) with a considerable reduction of running time. Probably the most

severe limitation of this approach is that it does not take into account changes

in internal energy of the different protein conformations. This clearly favors

open binding pockets that can accommodate large ligands, which form many

favorable intermolecular interactions.

Along these lines, Wei et al. have pointed out that the largest impact on the

improvement of their VS results was obtained by precisely including this

contribution.221 They have used an in-house modified version of DOCK245

and an ensemble of experimental structures of the receptor as templates to

represent conformational changes. The receptor is decomposed into rigid and

flexible regions. For each of the flexible regions, there are several conforma-

tional possibilities according to the experimental data. In this sense, the

receptor is multicomponent: a rigid component is combined with flexible ones.

A depth-first search algorithm is used to scan through all possible

conformations for the possibility to dock the ligand without steric clashes. If

found, the score is computed by summing the contributions from every

component. The best-fit conformation of each flexible receptor region is used

to assemble the receptor conformation. They applied the method to identify

known ligands of a hydrophobic cavity mutant of T4 lysozyme and the folate-

binding pocket of thymidylate synthase from the Available Chemicals

Directory. The inclusion of a weighted receptor conformational energy in

the scoring function led to an improvement in the enrichments, particularly for

lysozyme.
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This example clearly shows that incorporating flexibility into a docking

algorithm does not only involve sampling protein conformations, but also

evaluating them221,246 with respect to this energy. In this regard, it is worth

emphasizing the importance of considering the free energy of the receptor’s

conformation and the stabilizing influence that a bound ligand can provide.57

13.6.3 Data-Driven Docking Approaches

Computational docking approaches fail due to two main reasons: insufficient

sampling (which includes considering receptors as rigid) and simplifications in

the scoring functions. Although rigorous descriptions of intermolecular

interactions are available and could be readily incorporated, this comes

together with an increase of computational demands. In fact, for most of the

cases, the loss in efficiency does not pay off. To overcome this dilemma,

another strategy is possible: supplement the scoring functions with experi-

mental information. This is now a current trend in the field of protein–protein

docking, as can be seen from the assessments of the last CAPRI round.247

From there, a relevant conclusion is that ‘‘using prior knowledge of the protein

regions that are likely to interact remains an important ingredient for achieving

successful docking’’.

To supplement ‘‘pure’’ docking, there are two possibilities: first, to use the

knowledge derived directly from the binding partners and, second, to

incorporate experimental information about a particular complex. The first

alternative, which has been reviewed by Fradera and Mestres,248 includes the

field of the so-called ‘‘tailored scoring functions’’.249,250 There, the goal is to

adapt general scoring functions to the particular target of interest by including

information from known interactions of the protein with similar ligands. In

general, one could say that the better the studied system is known, the better

results can be expected, if the information is properly incorporated. Because

PPI as targets do not enjoy such a wealth of information as is available for

typical enzyme targets, the strategy cannot be fully exploited. Incorporating

directly measured information from experiments is the alternative.

Methods that use experimental information to drive the docking of

biomolecular complexes (typically protein–protein or nucleic acid–protein)

have been reviewed by van Dijk et al.251 The information that is currently

being used in this field has two main sources: mutagenesis studies and different

NMR properties (i.e., chemical shifts perturbation, H/D exchange, residual

dipolar couplings, diffusion anisotropy). Data derived from biochemical or

biophysical experiments can aid docking on two different levels: first, by

identifying binding sites and, second, by restricting the conformational search

space, concentrating the sampling around native-like poses. The second

objective is more challenging and requires data that incorporate very specific

structural information describing the orientation of the interacting counter-

parts. The use of mutagenesis data, for example, is restricted to the first

purpose, as the collected examples show.251
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Since the very beginning, biomolecular NMR data have been connected to

computational processing for structure elucidation. Structures are calculated

by means of minimizing a hybrid energy function (eqn 13.2) that incorporates

NMR measures (Edata, with a weighting factor wdata; e.g., inter-proton

distances derived from peak intensities arising from NOEs, torsion angles and

hydrogen bond restraints from scalar couplings, bond orientations from

residual dipolar couplings) and a force-field-based term (Eff):
252

Ehybrid~EffzwdataEdata ð13:2Þ

The accuracy of the obtained structures using this approach is highly

dependent on the amount and the quality of data available, as has been

acknowledged by Chen et al.253 Since complete collection and assignments of

structural restraints is a daunting task (and in some cases impossible), a look

from the ‘‘other side of the coin’’ might prove useful: when experimental data

are incomplete or inaccurate, directly deriving biomolecular (complex)

structure from it may not be viable. The data may still serve, however, to

guide a computational structure prediction tool or distinguish solutions

generated by it.

With respect to the whole process, the experimental data can be employed

before, at the same time, or after the computational sampling step. When used

as a pre-filter, approximate poses are manually generated that are then

computationally optimized.254 However, if the data are incorporated at the

search stage, on the one hand, the tedious and non-exhaustive manual

generation can be avoided and, on the other hand, native-like configurations

are likely to be searched. This last feature is also an advantage over methods

that use the experimental data only for post-filtering of proposed solutions.255

NMR as a tool for investigating the conformation of bound ligands has been

recently reviewed.256 There, the quantitative analysis of transferred-NOEs and

cross-correlated relaxation data are examined from the experimentalist’s

perspective. From the computational viewpoint, the far more interesting

question is which easily obtainable NMR measurements can be incorporated

to guide a docking algorithm. In this regard, chemical shift perturbations

(CSP) and saturation transfer difference (STD) have already proven promising

and will be discussed below. We will not consider here the case of complex

structure elucidation using intermolecular NOEs that is applicable to tightly

bound ligands, which is the standard protein NMR methodology.257

13.6.3.1 Guided Docking Using Chemical Shift Perturbations
(CSP)

1H–15N heteronuclear single quantum correlation (HSQC) NMR is nowadays

a well-established experiment. The most well-known application in the field of

drug design is the so-called ‘‘SAR (structure–activity relationship) by NMR’’33

approach. Upon ligand binding, the chemical shifts (CS) of the interacting
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partners are affected due to a change in the environment. Provided that no

large conformational changes occur during this process, the largest perturba-

tions that can be observed, e.g. on the protein side, are due to the binding of

the ligand. In the SAR by NMR approach, different low-affinity fragments are

used to ‘‘explore’’ the binding site of a 15N-labeled protein by monitoring CSP

and mapping them onto the protein surface. Combining the information

obtained from fragments that bind at different regions of the binding pocket,

these fragments can be chemically linked to yield new molecules with increased

binding affinity. 1H–15N HSQC spectra have also been used to determine that

sulindac-derived inhibitors of the Ras–Raf interaction258 bind directly to Ras.

This is a relevant result not only with respect to the particular studied system,

but it also shows the technique to be suitable for facilitating the task of finding

binding sites at the target (see Section 13.4).

The HADDOCK approach259,260 uses CSP information upon complexation

for structure prediction of macromolecular complexes in a paradigmatic way.

The underlying idea is that the size of the configurational/conformational

search space can be significantly reduced once the residues involved in the

intermolecular interactions are known. Information of this kind can be

obtained from the analysis of CSPs. CSPs, however, do not reveal which

residues interact with each other. At this point, docking comes into play. Here,

the experimental information is introduced by means of ambiguous interaction

restraints (AIRs), originally proposed by Nilges.261 An AIR (eqn 13.3) is

defined as an upper-bounded intermolecular distance that must be fulfilled

upon complex formation. However, it does not require a particular residue

pair to fulfill it, but a subset of pre-selected possible pairs.

deff
i(A),B~

XNatoms,i(A)

m~1

XNres,B

k~1

XNatoms,k(B)

n~1

1

d6
m,n

 !{1=6

ð13:3Þ

Residues defined as ‘‘involved in the interaction’’ are taken as pairs (i, k),

one from each counterpart A and B, respectively. The distance is computed for

every atom m in residue i from the first protein to every atom n of residue k in

the second protein. In this way, as soon as two atoms are in contact the

restraint is satisfied. Schieborr et al.262 have applied HADDOCK to the

problem of protein–ligand docking. Owing to the large size difference between

ligand and receptor, the authors modified the protocol, such that only strong

effects of the ligand on the protein were considered. As a result, the impact of

incorporating the AIR in this case is a restriction of the conformational search

to the binding site area. However, no information about the mutual

orientation of both binding partners is exploited. In fact, the authors

acknowledge that the binding site of the protein could have been located also

by mapping the strong CSP onto the protein structure. Thus, with this

approach, the success in determining the native structure of the complex still

depends on the force-field component of the scoring function.
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It is stimulating that CSPs have been used successfully in structure

refinement.263–265 This opens a new perspective for the docking field.

Refinement against CSP differs from structure calculations with distance

restraints. In the case of CSP refinement, there are no pairwise distance

restraints to fulfill, but a scoring function that minimizes differences between

observed and calculated CS is required. This implies that an efficient method

to compute theoretical CS is available.266 Contributions to proton CS can be

decomposed into local (diamagnetic and paramagnetic) and non-local

contributions. In the latter case, effects from nearby aromatic rings (drc) and

other sources of magnetic anisotropy (dmag) as well as electrostatic and solvent

effects (del) are included (eqn 13.4). The local effects are approximated by the

observed shifts in short peptides with corresponding secondary structure.

dtotal~dlocalzdrczdmagzdel ð13:4Þ

If there is no significant conformational change of the protein upon

complexation, the observed CS differences between the free and complex

spectra of the protein are due to the ligand. Compared to the SAR by NMR

approach that exploits such information only qualitatively, one can now

quantify these differences, such that one can deduce additional information

about the orientation of different groups of the ligand. Aromatic rings, when

present, constitute the main source of the contribution to the total CS

difference. Accordingly, the orientation of the ring with respect to the protein

can be determined because of the anisotropic nature of this effect. McCoy and

Wyss267 have explored the usefulness of these ‘‘ring current effects’’ within the

frame of the program SHIFTS268 as a post-filtering tool for elucidating the

structure of protein–ligand complexes. Although native-like and close-to-

native-like conformations were best ranked, the possibility of using such a

method for guiding docking remains unclear. There are two concerns that

would hamper the approach: first, in many cases errors in the prediction are in

the same range as the observed changes upon complex formation and, second,

CSP may also arise from conformational changes of the protein upon complex

formation. González-Ruiz et al. recently presented a new approach that steers

protein–ligand docking with quantitative NMR chemical shift perturba-

tions.269 This method is based on a hybrid scoring scheme that combines a

weighted sum of DrugScore,270 describing protein–ligand interactions, and

Kendall’s rank correlation coefficient,271 which scores the agreement between

experimentally determined and computed CSP for a given ligand pose. An

efficient empirical model considering only ring-current effects is used for back-

calculating CSP for a ligand pose. The hybrid scoring scheme was tested on 70

protein–ligand complexes with computed CSP reference data. Without CSP

information, a docking success rate of 71% was achieved. This increased to

99% if CSP information was included. The approach should be helpful for

protein–ligand complexes that are computationally difficult to predict, e.g. if a

ligand binds to a flat binding site.
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Instead of monitoring CSP from the protein side, Wang and Merz used a

semiempirical method at the NMDO level developed to predict CS of ligand

protons.272 As an application they ranked manually generated poses of a

FKBP12 inhibitor, finding a very good correlation between CSP and structural
RMSDs. Despite the higher level of theory applied than in the SHIFTS

approach, there are still concerns due to issues of protein flexibility. In

addition, although sufficiently fast for a single calculation, a scoring function

in a docking algorithm has to be evaluated millions of times, which makes this

method unappealing for VS applications.

13.6.3.2 Impact of Data-driven Docking on Computational
Targeting of PPI

Most of the current advances in designing small molecules to target PPI come,

as expected, from experimental and not theoretical approaches.273 However, as

the docking field develops, more challenging examples can be targeted, which

also includes PPI. Mixing experimental information concerning a particular

system with current docking algorithms has proven not only feasible but also

as the source for large improvements. This holds especially true in the

particularly demanding field of protein–protein docking.

At the moment, quantitative information that can be derived from

experiment (such as in the cases of CS and STD described) is used in

combination with computational approaches to confirm and validate binding

modes as a post-processing tool. Still, docking methods that rely on the
comparison between computer-predicted and experimentally observed proper-

ties remain inefficient, which prevents them from being useful in VS

experiments. Nevertheless, further developments of approaches that use

experimental data at search time should be pursued. If used in a pre-

processing step, using experimental information can help supplement

computational approaches by restricting the search space to those regions

that involve key interacting residues.

13.7 Summary and Outlook

Recent advances in computational approaches to detect PPI and identify

small-molecule PPIM have been reviewed. The number of successful examples

of computer-aided identification of agents that modulate PPI is still limited.

However, there is significant progress in understanding and modeling

molecular recognition properties of PPI, and we expect that in the next few

years the influence of computational means on targeting PPI will increase

considerably. This is reflected in the hit rates of around 15–20% obtained for
four of the virtual screening experiments listed in Table 1,289,293-295 which are

much higher than if non-targeted libraries are screened.17

We have primarily focused on structure-based approaches that require

knowledge of at least one of the interacting components of the protein–protein
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complex. Although detailed structural information about the PPIF may not be

available in all cases, and further challenges arise from the inherent plasticity of

PPIF, this way seems to be more promising to pursue in our opinion than ligand-

based approaches. On the one hand, for the latter methods to be successful,

structure–activity relationships or pharmacophore models derived from lead

structures obtained by experimental high-throughput screening need to be

established. However, a sufficient amount of good-quality data that is usually

required for training may not be available in many cases of novel protein–

protein targets. On the other hand, structural knowledge and insights into the

forces that act at a PPIF are not only critical to the prospective discovery or

design of small-molecule PPIM. It will also allow us to understand the reasons

for affinity and selectivity towards a given target retrospectively,274 which will

aid in guiding future efforts to improve both properties.

The approaches presented here form two key levels of what may become an

integrated approach for finding small-molecule PPIM by computational means

(Figure 13.3). Given the structure of the target, the first level comprises the

prediction of potential binding sites, which includes hot spot analysis, cleft

detection, and allosteric site detection. Subsequently, flexible, data-driven ligand

docking with improved scoring will be applied in the frame of VS. Equally

important, but not covered in this review, are aspects of target identification,

target druggability, and ligand pre-selection. Even in the field of ‘‘classical’’

targets the first two topics have only been touched recently,275,276 and

computational approaches are emerging.202,277–279 However, they may become

even more important in the case of protein–protein targets due to the large

variability of PPIF. As such, the interfaces of Bcl-2/Bak and p53/Mdm2 are

highly hydrophobic whereas the Ras/Raf-1 kinase interface is largely polar.274

Experiences gained from one PPIF may thus not be transferable to another case

and identifying ‘‘dead-end targets’’ early will save time and expenses.

With respect to ligand pre-selection, computational approaches to filter for

drug-like properties of small molecules are already widely used.280,281 Here, the

main focus is on the estimation of ADMET (absorption, distribution,

metabolism, excretion, toxicity) properties. Considering, however, that the

lack of well defined clefts or grooves in PPIF often results in PPIM with upper-

limit potencies in the micromolar range,89 a potential high degree of

promiscuity of these PPIM on other targets is the consequence. Such non-

specific, ‘‘promiscuous’’ compounds have been identified among screening

hits,282 lead compounds,283 and known drugs.284 A single, aggregation-based

mechanism of action has been proposed to explain the observed effects.285

Accordingly, the panel of approaches to estimate the pharmacological profile

of a potential PPIM should be extended to methods284,286 that allow us to

identify and eliminate potentially promiscuous compounds at early stages.

Finally, of heightened interest for the case of protein–protein targets would be

schemes that pre-select compounds to be used in the virtual screening that bind

to specific protein domains.17 For this, however, a systematic identification of

such entities by experiment is required first.
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Overall, being able to establish such a process will be a major breakthrough

in the field, and in combination with progress in various experimental areas,

we are awaiting exciting times for modulating PPI.
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112. H. J. Böhm, J. Comput. Aided Mol. Des., 1994, 8, 243.

113. R. Guerois, J. E. Nielsen and L. Serrano, J. Mol. Biol., 2002, 320, 369.

114. J. Schymkowitz, J. Borg, F. Stricher, R. Nys, F. Rousseau and L. Serrano,

Nucleic Acids Res., 2005, 33, W382.

115. T. Kortemme, D. E. Kim and D. Baker, Sci. STKE, 2004, 2004, pl2.

116. T. Kortemme and D. Baker, Proc. Natl. Acad. Sci. U. S. A., 2002, 99,

14116.

117. T. Kortemme, L. A. Joachimiak, A. N. Bullock, A. D. Schuler, B. L.

Stoddard and D. Baker, Nat. Struct. Biol., 2004, 11, 371.

118. C. Kiel, S. Wohlgemuth, F. Rousseau, J. Schymkowitz, J. Ferkinghoff-

Borg, F. Wittinghofer and L. Serrano, J. Mol. Biol., 2005, 348, 759.

119. T. Kortemme, A. V. Morozov and D. Baker, J. Mol. Biol., 2003, 326,

1239.

120. D. Bashford and D. A. Case, Annu. Rev. Phys. Chem., 2000, 51, 129.

121. N. Tuncbag, A. Gursoy and O. Keskin, Bioinformatics, 2009, 25, 1513.

122. N. Tuncbag, O. Keskin and A. Gursoy, Nucleic Acids Res., 2010, 38,

W402.

123. S. J. Darnell, L. LeGault and J. C. Mitchell, Nucleic Acids Res., 2008, 36,

W265.

124. S. J. Darnell, D. Page and J. C. Mitchell, Proteins, 2007, 68, 813.

125. D. G. Levitt and L. J. Banaszak, J. Mol. Graphics, 1992, 10, 229.

126. M. Hendlich, F. Rippmann and G. Barnickel, J. Mol. Graphics Model.,

1997, 15, 359.

127. B. Huang and M. Schroeder, BMC Struct. Biol., 2006, 6, 19.

128. R. A. Laskowski, J. Mol. Graphics, 1995, 13, 323.

129. J. Liang, H. Edelsbrunner and C. Woodward, Protein Sci., 1998, 7, 1884.

130. G. P. Brady, Jr. and P. F. Stouten, J. Comput. Aided Mol. Des., 2000, 14,

383.

131. M. Weisel, E. Proschak and G. Schneider, Chem. Cent. J., 2007, 1, 7.

132. V. Le Guilloux, P. Schmidtke and P. Tuffery, BMC Bioinf., 2009, 10, 168.

133. S. Eyrisch and V. Helms, J. Med. Chem., 2007, 50, 3457.

134. S. Leis, S. Schneider and M. Zacharias, Curr. Med. Chem., 2010, 17, 1550.

135. Y. Levy, S. S. Cho, J. N. Onuchic and P. G. Wolynes, J. Mol. Biol., 2005,

346, 1121.

136. E. Fischer, Ber. Dtsch. Chem. Ges., 1894, 27, 2985.

137. D. E. Koshland, Science, 1967, 156, 540.

138. C.-J. Tsai, S. Kumar, B. Ma and R. Nussinov, Protein Sci., 1999, 8, 1181.

139. B. F. Volkman, D. Lipson, D. E. Wemmer and D. Kern, Science, 2001,

291, 2429.

140. S. R. Kimura, R. C. Brower, S. Vajda and C. J. Camacho, Biophys. J.,

2001, 80, 635.

141. D. Rajamani, S. Thiel, S. Vajda and C. J. Camacho, Proc. Natl. Acad. Sci.

U. S. A., 2004, 101, 11287.

Physico-Chemical and Computational Approaches to Drug Discovery rsabook4chapter13.3d 6/2/12 15:16:48

The Charlesworth Group, Wakefield +44(0)1924 204830 - Rev 7.51n/W (Jan 20 2003)

Computational Strategies and Challenges for Targeting Protein–Protein Interactions with

Small Molecules 353



142. G. R. Smith, M. J. E. Sternberg and P. A. Bates, J. Mol. Biol., 2005, 347,

1077.
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