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In virtual screening, small-molecule ligands are docked into
protein binding sites and their binding affinity is predicted.
Knowledge-based, regression-based and first-principle-based
methods have been developed to rank computer-generated
binding modes. As a result of still existing deficiencies, a best
compromise might be the combination of several scoring
schemes into a consensus scoring approach.
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Introduction
As we approach the post-sequencing phase of many genome
projects, it is estimated that the number of potential drug
targets will increase from about 500 at present to around
5000–10,000 in the next few years [1]. Methodological
advances in protein structure determination will provide a
tremendous number of new protein structures. Accordingly,
the scope and importance of structure-based drug design
projects (for reviews, see [2–6]) involving virtual screen-
ing [7,8] will increase significantly. A key prerequisite 
for the successful application of these techniques is a 
profound understanding of the criteria that determine
whether a ligand binds to a particular biological target. A
move towards a limited set of prospective leads, discov-
ered in silico, can only be considered as a practical
alternative to the high-throughput screening of large
compound libraries if the binding modes and affinities of
structurally distinct ligands for the protein under investi-
gation can be predicted correctly.

For a virtual screening strategy to be reliable, both rele-
vant binding geometries must be generated and relevant
binding affinities must be predicted correctly.
Substantial progress has been made in the latter area in
1999 and 2000, resulting in a broad spectrum of methods
for the estimation of binding affinities. Here, we summa-
rize and compare methods that have recently emerged 
in the field, primarily newly developed knowledge-
based potentials and, furthermore, improved empirical
scoring functions or techniques based on first principles.
Further information can be found in other recent
reviews [6,9,10,11•,12–15].

Knowledge-based potentials
Knowledge-based approaches evaluate the increasing
number of experimentally determined protein–ligand

complexes by statistical means to extract rules on preferred
interaction geometries. These rules are converted into
‘pseudo-potentials’, which, in turn, can be applied to score
computer-generated ligand binding modes. Compared
with force-field potentials, these knowledge-based poten-
tials tend to be ‘softer’, allowing better handling of the
uncertainties and deficiencies of computed interaction
geometries. Furthermore, such a statistical approach
implicitly incorporates physical effects not yet fully under-
stood from a theoretical point of view, for example,
(de)solvation and polarization. A major concern with statis-
tical potentials is that they might only model geometric
properties close to experimental (near-native) situations
previously observed in the crystal structures used to derive
these potentials. Might they also provide a meaningful
description of the entire effective energy surface of a gen-
eralized protein–ligand complex? The application of a
knowledge-based potential to describe protein unfolding
of the GCN4 leucine zipper [16•] suggests they may
approach a more general validity, as similar results were
obtained to those using the CHARMM all-atom force-
field. Three knowledge-based approaches to the scoring of
protein–ligand interactions have been developed during
the past two years [17••,18••,19•].

Muegge and Martin [18••] have extracted distance-depen-
dent Helmholtz free energies for pairs of 16 protein-atom
and 34 ligand-atom types from 697 crystallographically
determined protein–ligand complexes to develop a poten-
tial of mean force score (‘PMFScore’). Using the crystal
structures of 77 protein–ligand complexes, a correlation
with a squared regression coefficient of r2 = 0.61 was
obtained for predicting their experimental binding ener-
gies. Implemented into the docking program DOCK4,
PMFScore was used to screen 3247 small molecules for
binding to the FK506-binding protein [20]. Compared with
the standard force-field scoring in DOCK4, PMFScore
achieved a significantly improved enrichment of particularly
weakly binding ligands. The DOCK4/PMFScore combina-
tion was also used to predict the binding modes of
neuraminidase inhibitors [21] and stromelysin-1 (MMP-3)
inhibitors [22].

Thornton and co-workers [19•] have also developed a
potential of mean force to describe protein–ligand inter-
actions. Following Sippl’s approach [23], 820
pair-potentials were derived for 40 nonmetal atom types,
including polar hydrogens, based on 351 carefully select-
ed Protein Data Bank (PDB) complexes. Two sets of
potentials were reported, one excluding (‘BLEEP-1’) and
one including (‘BLEEP-2’) interactions with water.
Applying BLEEP-2 to a set of 90 crystallographically
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determined complexes of known binding affinities, a cor-
relation coefficient of 0.74 was obtained [24]. As a test for
the recognition of near-native binding modes, BLEEP-2
also successfully identified the crystal geometry of
heparin bound to bFGF among a set of decoy structures
generated by FTDock.

Gohlke et al. [17••] have developed a knowledge-based
scoring function (‘DrugScore’) by converting structural
information for 1376 protein–ligand complexes, extracted
from Relibase [25], into distance-dependent pair-
potentials and solvent-accessible surface-dependent sin-
glet-potentials using 17 different atom types. The sum of
both terms is used to score protein–ligand binding modes.
For two test sets of 91 and 68 complexes, DrugScore rec-
ognizes a near-native binding mode out of multiple
solutions generated by the docking program FlexX and
scored as best solution (rank 1) in 75% of all cases. For lig-
and geometries generated by DOCK4, DrugScore is
superior to DOCK’s ‘chemical scoring’. This underlines
its discriminative power to extract near-native binding
modes. For a set of 56 crystallographically determined
protein–ligand complexes, an r2 value of 0.56 is obtained
for predicting binding affinities. DrugScore also success-
fully ranked data sets of docked thrombin, trypsin and
thermolysin inhibitors [26]. Finally, the pair-potentials of
DrugScore were used to identify ‘hot spots’ in binding
pockets. For a set of 159 crystal structures, the observed
atom type of a ligand corresponds to an atom type pre-
dicted to be most favorable in that region in 74% of all
cases [26].

All three approaches are based on the same formalism and
relate observed frequency or probability distributions to
pair-(pseudo-)potentials ∆Wij(r):

Here, gij(r) is a frequency or probability distribution of
atom pairs of types i and j at a distance r from each other,
and gref corresponds to a reference distribution. The choice
of the latter is crucial to the form of the potential and all
three approaches differ in this aspect [27,28]. To include
implicit solvation effects, Muegge and Martin [18••], and
Mitchell et al. [19•] chose a relatively large limit of 12 Å
and 8 Å, respectively, up to which contact data have been
sampled for compiling the pair-potentials. In contrast,
Gohlke et al. [17••] introduced additional solvent-accessi-
ble surface-dependent singlet-potentials and data for the
pair-potentials were sampled up to 6 Å, emphasizing spe-
cific interactions between ligand and protein atoms.
Applying an extended cutoff, Muegge and Martin [18••]
stressed the need for a volume correction term to com-
pensate for intraligand interactions; intraprotein
interactions, however, are not considered. Interestingly,
for two test sets that are limited to distinct protein classes,
the influence of the ligand volume correction factor was

found to be weak, whereas for test sets containing diverse
protein–ligand complexes, an improved ranking is
described once the volume correction is applied [29]. In
this context, Shimada et al. [30] proposed a self-consistent
approach to analyze knowledge-based atom-pair-poten-
tials. Protein–ligand complexes modeled using a particular
input potential were selected to construct databases from
which statistical protein–ligand potentials were derived.
This strategy allows both the consequences of modifica-
tions to such potentials to be explored and the study of
their performance in reproducing the input potential.

Regression-based scoring functions
Empirical scoring functions estimate the binding affinity of
protein–ligand complexes by adding up interaction terms
derived from weighted structural parameters of the com-
plexes. The weights are assigned by regression
methods — fitting predicted and experimentally deter-
mined affinities to a given set of training complexes.
Although the decomposition of the binding free energy into
single portions is not valid from a theoretical point of view
[31,32], these weights are usually regarded as free energy
contributions from specific interactions, for example,
hydrogen bonding, ionic interactions, hydrophobic interac-
tions and entropic contributions. Apart from their
computational efficiency, the individual terms of such a
function reflect the way a medicinal chemist would decom-
pose contributions to protein–ligand binding [33•].

A major drawback of any regression-based scoring func-
tion is the dependence on the size, composition and
generality of the training set used to derive the weights.
As yet, thermodynamic data for protein–ligand complexes
are relatively sparse and more research is required to
assemble such information. Another cause for concern is
the implicit assumption that each occurrence of a particu-
lar interaction contributes equivalently [11•]. This may
result in an overestimation of polar interactions with
respect to nonpolar ones [10]. Stahl [34] addressed this
problem for hydrogen bonds in the regression-based scor-
ing function of FlexX by introducing a weighting scheme
that scales these contributions according to the solvent
accessibility of the hydrogen bond partners. Retrieval of
thrombin inhibitors from the World Drug Index (WDI)
yielded a higher percentage of compounds known to be
active at thrombin on the best-scored ranks (improved
enrichment factor)  using the latter solvent-accessibility-
dependent scoring scheme.

A clear trend away from generally applicable functions
towards tailor-made scoring functions specifically adapted
to predict binding affinities for one protein has been seen
in the past two years [33•]. Although better (cross-validat-
ed) correlations between predicted and experimental data
are achieved with the more recent developments, one has
to bear in mind that regression-based approaches can only
interpolate. Thus, it remains to be seen whether these tai-
lor-made functions are capable of identifying new
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molecular scaffolds that are not present in the training set.
Nevertheless, an encouraging example is given by the
study of Rognan et al. [35], who reliably predicted the
binding affinities of 26 nonapeptides for a class I MHC
protein using only five data points to adapt a six parameter
regression equation (‘Fresno’) similar in form to SCORE
[36] or ChemScore [37]. Transferring the adapted equation
to a set of octapeptides binding to a related class I MHC
protein, however, achieved no correlation, demonstrating
the limited scope of such individually calibrated scoring
functions that must be reparameterized for every new
application. Similar concepts based on the formalism of
3D-QSAR analyses try to consider additional information
about the specific binding pocket [38,39].

Kasper et al. [40] decomposed the measured free energy of
binding of peptides to the molecular chaperone DnaK
into nonpolar, electrostatic and conformational entropy
contributions. They related the nonpolar interactions to
the change in solvent-accessible surface, used the empiri-
cal scale of Pickett and Sternberg [41] to account for
changes in the conformational entropy of the solutes, and
included Coulombic interactions and solvation effects fol-
lowing a scheme derived by Gilson and Honig [42].
Finally, the individual energy contributions were scaled to
the given binding affinities of 11 peptides of equal length.
In this case, the entropic term showed very high fluctua-
tions and contributed little to the total binding energy, so
it was discarded from the final equation. This is almost
certainly a result of using the restricted training set: con-
tributions with little or no variance across the data set will
not be recognized.

An interesting alternative to partially circumvent such
shortcomings has been presented by Murray et al. [43].
They adapted their previously published general scoring
function [37] to a set of thrombin complexes under the
restraints of the old (diverse) training set using Bayesian
regression, allowing fine-tuning of their function to either
general or specific predictive power.

First-principle-based approaches
First-principle-based approaches also approximate the
binding free energy of protein–ligand complexes by
adding up the individual contributions of different types
of interaction. In contrast to regression-based scoring
functions, however, the individual terms of such a ‘mas-
ter equation’ are derived from physico-chemical theory
and are not determined by fitting to experimental affini-
ties. In most cases, gas-phase molecular mechanical
energies are combined with solvation free energies and
contributions from vibrational, rotational and translation-
al entropies. While comparing structurally related
ligands, the latter contributions to entropy are frequent-
ly identified to be of negligible influence. Evaluation of
the solvent contributions still represents a major chal-
lenge in view of the computational demands and
accuracy [44].

Honig and co-workers [45] calculated binding free ener-
gies for four inhibitors of bovine β-trypsin. They
considered changes in Coulombic and solvation energies,
as derived from the solution of the finite-difference
Poisson–Boltzmann equation, together with contribu-
tions resulting from nonpolar interactions and losses of
conformational entropy either of the protein or of the lig-
ands. Interestingly, electrostatic interactions turn out to
be adverse to binding in all cases. Although the calculat-
ed binding free energies exceed the experimental values
by about 10 kcal/mol in all cases, the relative order 
of binding is correctly predicted. Hoffmann et al. [46]
combined CHARMM22 force-field energies with electro-
static and nonpolar portions of the solvation energy to
rerank ligand binding modes generated by FlexX.
Because of the roughness of the energy surface provided
by the all-atom force-field, a time-consuming energy
minimization of the ligand conformations (several hours
per 100 conformations) inside the protein binding site
was necessary.

The Kuntz group [47] investigated the impact of ligand
solvation on docking. Electrostatic and nonpolar solvation
free energies for putative ligands taken from the Available
Chemicals Directory (ACD) were precalculated and stored
in look-up tables. These energies were subsequently sub-
tracted from the interaction energies experienced by the
ligands inside the protein (calculated using electrostatic
energies derived from DelPhi potentials and van der Waals
contributions). Upon docking ligands into thymidylate
synthase, T4 lysozyme mutants and dihydrofolate reduc-
tase (DHFR), it was observed that the scores of known
ligands improved and that the number of molecules pre-
dicted too well because of high formal charges or large
molecular weights was reduced. In another study, Zou
et al. [48] applied a modified ‘generalized Born’ (GBSA)
model to ligand–receptor binding and optimized the para-
meters with respect to DHFR and trypsin, such that the
predicted binding energies of known inhibitors agree well
with experimental values and the number of false-positive
predictions is reduced.

Extending their ‘MM-PBSA/GBSA’ approach [44,49],
which combines molecular mechanics gas-phase energies
with a continuum solvation approach to handle solvent
effects and with normal mode analysis, Kuhn and Kollman
[50] described a ‘computational fluorine scanning’
approach to probe possible hydrogen-to-fluorine replace-
ments on ligands with respect to an improvement of ligand
binding affinity. Based on a single molecular dynamics
simulation of a reference ligand, this reference is substi-
tuted in a subsequent analysis of the trajectory by a
partially fluorinated ligand. The free energy is estimated
for the complex, protein and ligand by applying the
MM-PBSA energy analysis. In a similar manner, ‘compu-
tational alanine scanning’ was used to probe
protein–protein interactions [51]. A major limitation of this
technique is the fact that changes in binding can only be
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estimated if a smaller group replaces a larger one; muta-
tions resulting in a larger group replacing a smaller group
will create steric clashes that must be relieved before any
binding energy calculation. 

Consensus scoring and comparison of
approaches
In an intersection-based consensus scoring approach,
Charifson et al. [52•] combined up to three scoring func-
tions to rank docked ligand–protein geometries. Compared
with the performance of the single functions, improved hit
rates were found. However, it has been questioned by the
authors themselves [52•] whether such an approach is of
general use to predict binding free energies of small sets of
compounds. Similarly, So and Karplus [53] combined the
affinity predictions of five QSAR-based methods and
observed a general improvement of the predictivity with
an increasing number of models considered.

Independent comparative studies of docking/scoring
approaches are still rather rare. In a recent publication,
Bissantz et al. [54] assessed the accuracy of several meth-
ods using three different docking programs (DOCK4,
FlexX, Gold) in combination with seven scoring func-
tions applied to two protein targets. Because of the
restricted test scenario, the identification of the ‘best’
docking/scoring combination is difficult, especially as the
combination of best predictive power varied with the 
target selected.

Conclusions
The past two years have seen substantial progress in the
development of tools to score protein–ligand interactions,
particularly in the area of knowledge-based potentials.
Knowledge-based potentials have benefited from the
steadily increasing amount of structural data on
protein–ligand complexes. As no preselected training sets
are used, these methods should be generally applicable, in
particular compared with the specifically adapted regression-
based approaches. The incorporation of computationally
feasible and yet sufficiently accurate (continuum) solva-
tion models dominated the developments in the field of
first-principle-based techniques.

The increasing number of successful applications using
these scoring schemes (see [2,55] for references) indicates
that currently available methods allow discovery of active
molecules in a virtual screening approach. The improved
performance of consensus scoring approaches suggests
that, at present, no individual scoring function adequate-
ly treats all of the effects important for protein–ligand
binding. Thus, more effort is required to improve the
existing functions; in particular, better experimental,
structural and energetic data must be made available. In
addition, competitions such as CATFEE (Critical
Assessment of Techniques for Free Energy Evaluation;
http://uqbar.ncifcrf.gov/~catfee) will help elucidate the
scope and reliability of these techniques.
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