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ABSTRACT Various coarse graining schemes have been proposed to speed up computer simulations of the motion within
large biomolecules, which can contain hundreds of thousands of atoms. We point out here that there is a very natural way of
doing this, using the rigid regions identified within a biomolecule as the coarse grain elements. Subsequently, computer re-
sources can be concentrated on the flexible connections between the rigid units. Examples of the use of such techniques are
given for the protein barnase and the maltodextrin binding protein, using the geometric simulation technique FRODA and the
rigidity enhanced elastic network model RCNMA to compute mobilities and atomic displacements.

INTRODUCTION

The first articles applying the numerical technique of molec-

ular dynamics to a protein were in the mid 1970s, beginning

with articles such as those by Levitt and Warshel (1) and by

Karplus and McCammon (2). In this technique, the classical

equations of motion F¼ma are integrated forward in time,

with the force F being determined from the gradient of a

phenomenologically determined potential. Much effort has

been devoted to determine potentials suitable for studying

proteins, with AMBER (3) and CHARMM (4) being two

of the most widely used today, which grew out of the early

work on the consistent force field (CFF) (5). In the last ;30

years, molecular dynamics has become the standard tech-

nique for studying the motion of proteins, with over 10,000

articles published containing the words ‘‘molecular dynam-

ics simulations’’ and ‘‘proteins’’. In Fig. 1, we show how the

number of articles published, embracing this technique, has

continued to increase rapidly, with nearly 1400 articles

appearing in 2004.

In recent years, the structures of some very large biomol-

ecular assemblies, like viral capsids (6), the ribosome (7),

and membrane protein complexes (8) have been determined

by x-ray crystallography. These involve hundreds of thou-

sands of atoms, and are currently presenting a challenge to

find simulation techniques to better understand the motion

of these large complexes. We can expect many more such

structures to become available in the future, using x-ray

crystallographic techniques, and probably even larger struc-

tures when cryo-EM techniques plus molecular mechanics

refinement (9,10) are able to produce structures at atomic

resolution.

It is likely that molecular dynamics will continue to

produce important insights in the possible local motions of

proteins, but there is an urgent need for new techniques so

that larger number of atoms can be handled giving motions at

10 Å and greater, corresponding to biological times of up to

a second and longer. Current molecular dynamics simula-

tions are limited to ;100 ns for proteins with a few tens of

thousands of atoms, which is seven orders of magnitude less

than simulations on the scale of up to seconds of biological

time that are desirable to explore the diffusive motions of

biomolecules. Assuming that Moore’s law holds, this would

require a wait of nearly 50 years (107 � 223; because com-

puter power doubles only every 2 years, this results in 46

years in total), which is clearly unacceptable.

A great deal of effort in recent years has been put into

accelerating molecular dynamics techniques using, e.g., par-

allel tempering (11) or larger time steps (12). These en-

hancements to molecular dynamics techniques are proving

useful but are unlikely to be able to produce the orders of

magnitude improvements that are now needed. More prom-

ising are methods that use spatial coarse graining.

Spatial coarse graining uses larger units than single atoms,

in the expectation that such a fine level of detail is not

required to describe the motion of very large complexes.

(Analogously, motions of electrons need not be considered if

one is only interested in the motions of nuclei within the

molecular mechanics framework.) This of course must always

be justified and great care taken. For example, although

coarse graining may work well away from an active site in a

protein, it would not be appropriate around ligand binding

sites. There are a number of schemes currently in use and

under development and we discuss two in detail in this paper.

Of course there are many other coarse-grained models like

Go models (13,14) that are widely used. Subunits were fixed

by using coarse grained protein models as long ago as

1976 (15).

Another coarse grained model that has been used is

Rosetta (16), that replaces a short sequence segment (with up

to nine residues) by a single body with six degrees of

freedom—three translational and three rotational. This model
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has been widely used in studies of protein folding, for ex-

ample.

The elastic network model (ENM) (17,18), uses only the

Ca atoms as markers for each residue, which are treated as

point objects and hence have three degrees of freedom. We

will discuss this approach in more detail later.

In this extended comment, we ask the question ‘‘Is there a

natural way of choosing groups of atoms for coarse graining’’

rather than an arbitrary procedure that selects, for example,

every tenth atom. We show that the rigid units of a bio-

molecular complex can be predetermined using geometrical

and topological techniques, and that these do form a natural

basis for coarse graining. We give two examples of the

current use of such techniques in a geometrical simulation

approach (FRODA) and the elastic network model where this

approach has recently been incorporated (RCNMA). This

approach to coarse graining is straightforward to implement

and can be incorporated into almost any numerical simulation

technique.

Rigid region decomposition

To use the rigid regions of the biomolecule for coarse

graining, we must first review what is meant by this concept.

This approach, which is summarized here, has been devel-

oped by Thorpe and co-workers in a series of articles (19–23)

and is available in the software package FIRST (Floppy

Inclusions and Rigid Substructure Topography). A protein

can be viewed as being held together by forces of varying

strengths. We identify the most important and strongest

forces and describe them by constraints. The most important

constraints are along the polypeptide chain; the covalent

bond lengths and angles, as well as the locked dihedral angle

associated with the peptide bond. When the protein

undergoes a hydrophobic collapse and folds into the native

state, additional constraints come into play. The hydrophobic

interactions are described by tethers, and the hydrogen bonds

are identified and assigned appropriate constraints. This

produces a network of constraints, which is then analyzed to

identify the rigid regions and the flexible joints between

them. The rigid regions identified in this way can vary in size

from three atoms up to a few hundred atoms. Examples of

such rigid region decompositions are shown for the protein

barnase and the maltodextrin binding protein in Fig. 2.

What do we mean when we say a region is rigid? The

point here is that such a region has a well-defined equi-

librium structure about which harmonic vibrations are

thermally driven and take place about the fixed atomic equi-

librium positions. Thus, such rigid regions have vibrational

properties similar to those of an amorphous solid (24).

However, the biologically important diffusive motion is

expected to be associated with the motions of the flexible

FIGURE 2 Showing (a) the three largest rigid regions in the protein

barnase and (b) the five largest rigid regions in the maltodextrin binding

protein determined by the program FIRST (available for download or

interactive use via http://flexweb.asu.edu). The largest rigid regions or cores

of the proteins are shown in the bottom left-hand corners in both cases. Note

that the rigid regions can move as such as they are surrounded by flexible

regions.

FIGURE 1 Showing how the number of papers applying the molecular

dynamics technique to proteins has increased. These figures were found by

searching on the words ‘‘molecular dynamics simulations’’ and ‘‘protein’’

occurring in any field as indexed by Google Scholar. The increase in the

number of articles has been rapid but subexponential.
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regions, and this is the part of the structure where numerical

methods can most profitably concentrate their attention. Note

that no relative motion is allowed within rigid regions. Such

regions can only move as a rigid body with six degrees of

freedom.

Flexibility is a static property and determines the possi-

bility of motion, where nothing actually moves. It involves

only the virtual motion of the network. Finding the rigid

and flexible regions is rather like examining a building and

identifying parts that are likely to move (doors, windows,

etc.). Resources can then be concentrated on those parts of

the building in looking for motion (mobility), rather than wast-

ing efforts trying to move fixed walls, etc. Yet, to determine

the actual motion and its amplitude requires introducing a

kinematics that produces real movements and hence mobility.

From a study of rigidity and flexibility alone, no information

is available about the direction and amplitude of the possible

motions.

Examples

In this section we give two examples showing how the

natural coarse graining in terms of the rigid regions as

determined by FIRST can be used to study dynamics and

hence mobility.

FRODA

In a recent article, a new algorithm (FRODA, which stands

for Framework Rigidity Optimized Dynamic Algorithm)

was introduced that has been designed to move the flexible

parts of the protein, producing motion. The motion of the

protein is guided by ghost templates that are specially tailored

to ‘‘cover’’ each rigid region and then used to efficiently

guide the motion through allowed regions of conformational

space. In addition to the constraints used in determining the

rigid regions, the inequality constraints associated with

hard sphere van der Waals overlap are added. This makes

the pathway through conformational space tortuous, as the

protein can be regarded as a dense packed assembly of

spheres, which can roll around each other while maintaining

the covalent, hydrophobic, and hydrogen bond constraints

between them. Details of this technique can be found

elsewhere (25).

After applying FIRST to determine the rigid and flexible

regions, FRODA can be used to explore the mobility using

random Brownian type (Monte Carlo) dynamics. This pro-

cedure emphasizes the geometry of the motion, while

including sufficient local chemistry to be realistic. Such an

approach can be expected to be particularly appropriate for

very large biomolecular assemblies, where the geometry will

largely determine the large scale motions.

FRODA suppresses the high frequency motions and

focuses on the low frequency diffusive motions and as such

can be compared with NMR mobilities as shown in Fig. 3 a

for barnase. FRODA does not do such a good job in pre-

dicting Debye-Waller or B-values, which measure the root

mean square deviation of each atom about its average

position. This is to be expected as coarse-grained methods

ignore the higher frequency motions. Whereas mobility

occurs in barnase mostly in three loop regions, a large

ligand-induced hinge-twist motion between two domains is

observed in the case of the maltodextrin binding protein.

FRODA is able to qualitatively predict the observed

displacements between ligand-bound and apo-forms of the

protein (Fig. 3 b). This is a much less-defined procedure as

the protein wanders around in conformational space in an

FIGURE 3 Comparing the mobility of barnase (a), residue by residue as

measured in NMR (blue line) with that predicted by FRODA (red line). The

high-frequency modes that are absent in FRODA are expected to produce a

small nearly constant background, which would raise the red curve a little.

Note that FRODA gives absolute amplitudes and no scaling is involved.

Both sets of data involve 20 conformers that have been globally aligned. The

FRODA set was chosen to be maximally separated in root mean square

deviation space from the ;10,000 separate conformers generated. In panel

b, displacements of Ca atoms of the maltodextrin binding protein between a

ligand-bound and an apo crystal structure of the protein (blue line) as well as

predicted by FRODA (red line) are shown. The FRODA simulation was

started from the apo form, and the displacement of Ca atoms was determined

with respect to the 60,000th conformation generated, where the conforma-

tion is closer to that of the ligand bound structure.
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undirected way and so would not be expected to reach the

ligand bound state exactly—the fact that it gets close is

encouraging. With directed targeting, it would be possible to

approach the ‘‘target’’ closely (25,26), but this was not the

purpose here.

RCNMA

Based on an analytical solution to Newton’s equations of

motion, Normal Mode Analysis (NMA) is able to predict the

most probable cooperative motions of molecular systems

(27). The introduction of computationally much cheaper

alternatives has allowed biologically relevant motions even

for systems of the size of the ribosome (28) to be found. In

these Elastic Network Models (ENM) (17,29), the all-atom

representation used in NMA is replaced with a reduced

representation by considering, e.g., only Ca atoms between

which simplified potentials in terms of Hookean springs of

equal strength act (Fig. 4). Further coarse graining can be

achieved if one considers the macromolecule to be constructed

of rigid bodies (‘‘blocks’’) (15) that are connected by flexible

parts (Rotations-Translations of Blocks approach (RTB)) (30).

So far, blocks were determined by including up to six protein

residues consecutive in sequence into one block (30,31) or by

considering whole protein subunits of a virus capsid as rigid

(32). However, these routes do not distinguish rigid parts of a

protein from flexible regions.

This limitation can be overcome by a recently introduced

multiscale modeling approach that combines concepts from

rigidity and elastic network theory RCNMA (which stands

for Rigid Cluster Normal Mode Analysis) (33). Here, the

protein is initially decomposed into rigid clusters by FIRST,

circumventing the definition of blocks in an ad hoc manner.

Furthermore, tertiary interactions within the protein are con-

sidered as flexibility determinants. In the subsequent step,

information about amplitudes and directions of motions is

obtained for the thus coarse-grained ENM by performing an

RTB analysis. By allowing only translational and rotational

degrees of freedom of the blocks in this analysis but no

relative motions within a block, the system is effectively

treated as if Ca atoms within a block were connected by

springs of infinite strength.

In terms of efficiency, the coarse-grained ENM has on

average only ;30% of the number of degrees of freedom

compared to the conventional ENM, resulting in a significant

reduction of memory requirements and computational times

by factors of 9–27 and 25–125, respectively. In terms of

accuracy, the predicted directions and magnitudes of protein

motions are at least as good as if no, or a uniform, coarse

graining is applied (33). As an example, the mobility of Ca

atoms of barnase predicted by the coarse-grained ENM and

conventional ENM is shown in Fig. 5 a. It can be seen that

FIGURE 4 ENM representation of barnase. Between Ca atoms (con-

nected by a tube) springs (represented as sticks) of equal strength act. The

orientation of the protein is similar to that shown in Fig. 2 a.

FIGURE 5 (a) The mobility of Ca atoms of barnase as measured in NMR

(blue line) and (b) the displacement of Ca atoms of the maltodextrin binding

protein between a ligand-bound and an apo crystal structure of the protein

(blue line). In both cases, conformational changes predicted by the rigidity

enhanced ENM (RCNMA) (red line; using the rigid cluster decomposition

as shown in Fig. 2 a) and the conventional ENM (green line) are also given.

The theoretical curves are scaled with respect to the experimental ones such

that the area under the square of the curves is identical (17).
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with the rigid regions included, the agreement with the ex-

perimentally measured mobilities is considerably improved,

particularly in the N- and C-terminal protein regions. This

is also demonstrated by a larger correlation coefficient of

predicted versus experimental values of r2 ¼ 0.56 in the case

of RCNMA compared to r2¼ 0.50 in the case of the standard

ENM model. A similar result is also found when comparing

large conformational changes between a ligand-bound and

an apo form of the maltodextrin binding protein with

displacements predicted by RCNMA or ENM (Fig. 5 b).
Accordingly, the correlation coefficients of predicted versus

experimental values are r2 ¼ 0.62 and 0.55 for RCNMA and

ENM, respectively.

These findings indicate that explicitly distinguishing

between flexible and rigid regions is advantageous, because

i), it allows to better characterize flexible and rigid regions

than with springs of equal strength and ii), it leads to a less

rugged energy surface that facilitates the modeling of large-

scale motions. We note that the predicted mobility values

were scaled to the experimental ones (17). These scaling

factors are rather independent of the structure or the se-

quence of the protein, however (33).

When extrapolating the small harmonic motions described

by the ENM to larger amplitudes great care must be taken to

avoid the problem of distortions caused by nonlinearities.

An example of such a nonlinear distortion would be three

equally spaced co-linear points defining a rigid rod, which

rotates about the center. In the linear approximation, the

outer points move in parallel straight lines in opposite direc-

tions, with the center point fixed. If these amplitudes are

magnified, the three points no longer just rigidly rotate about

the central point, but the length also grows. Likewise, such

distortions can show up for example in a-helices by amounts

up to 25%, when they should be remaining in the same

conformation. This effect will occur whether the a-helices are

held rigid, as in the rigidity modified ENM, or if they can flex

as in the original ENM. The best way to avoid such distortions

is to make a series of very small amplitude motions and then

redefining and recomputing an ENM. Such a series of move-

ments can be used to define large-scale motions without intro-

ducing distortions caused by nonlinearities.

The second more serious cause of unphysical distortion

that occurs in the ENM is that associated with the stretching

of the springs between the Ca atoms in the region that should

be kept rigid. This occurs because the strength of the springs

is the same everywhere in the standard ENM, and so rigid

regions will distort as they are insufficiently constrained.

This second effect is completely eliminated in the RCNMA

approach. Along these lines, a modification of the ENM

model has been proposed recently to ease the so-called ‘‘tip-

effect’’. By increasing the stiffness of degrees of freedom of

these regions that are not very densely packed compared to the

rest of protein, the pathological behavior in motions of regions

protruding out of the main body (such as loops) observed in

the conventional ENM model can be eradicated (34).

CONCLUSION

We have shown that there is a natural way of coarse graining

that can be used easily and successfully when simulating

motions of biomolecules. This coarse graining uses units of

variable sizes that correspond to the predetermined rigid

regions found by applying FIRST, which determines rigid

regions and flexible joints that separate them from a network

representation of the molecule, consisting of covalent,

hydrophobic, and hydrogen bonds. We have used the protein

barnase and the maltodextrin binding protein as illustrative

examples and applied two approaches, a geometrical simula-

tion approach, FRODA and a rigidity enhanced elastic net-

work model RCNMA, to compute mobilities, obtaining good

agreement with experimental results in both cases. Coarse

graining, using regions of variable size, as determined by

finding the rigid regions, is a natural way to proceed and

should be useful as a front end for many numerical simulation

procedures, and not just the two discussed in this article. An

example is the recent work on the kinetics of viral capsid

assembly, using a FIRST coarse graining to reduce the total

number of degrees of freedom (35).
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