


1. Introduction

Mutual molecular recognition is the starting point for
almost all processes in biological systems. More than
100 years ago, this fact was first recognized by Emil Fischer,
who wrote ™that enzyme and glycoside must fit together like a
key and a lock in order to initiate a chemical action upon each
other∫.[3] Also Paul Ehrlich×s statement ™Corpora non agunt
nisi fixata∫[**][4] is–in a somewhat extended form[5, 6]–the
basis for the scientific explanation of drug action. As a

consequence, the geometrical and chemical complementarity
of small molecules (termed ligands in the following) and their
macromolecular biological target structures (mostly proteins,
termed receptors in the following) influences metabolic or
signal-transduction pathways, and thus initiates a physiolog-
ical effect.

In recent years, knowledge of the relationship between
molecular structure and biological effects has prompted a
fundamental change of the methods used in modern drug
research. Molecular biological techniques identify receptor
dysfunction or failures in regulation as possible causes of a
disease. Furthermore, they help to isolate proteins in a
purified form, the three-dimensional structure of which is
subsequently determined using X-ray structural analysis,[7, 8]

NMR spectroscopy,[9±11] or cryoelectron microscopy.[12±15] In
addition, the number of characterized protein sequences is
currently growing at a dramatic rate as a result of several
genome-sequencing projects.[16±19] This provides a platform for
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[**] ™The bodies do not act if they are not bound.∫
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the development of improved techniques to predict protein
function[20±24] and their three-dimensional structure.[25, 26] Fur-
thermore, enhanced methods for crystal-structure analy-
sis[27±30] are currently being developed and computational
procedures are being applied to identify and select new
biological targets.[31±33] As a result of these efforts, in the near
future an enormously expanded range of structurally and
functionally characterized molecular targets will become
available for drug therapy.[34]

The development of a new drug, which can take up to
15 years and consume about half a billion dollars,[35±37] can be
divided into several phases.[38, 39] The process starts with an
initial search for a lead structure, that is, a ligand with a
detectable affinity for a given receptor. This step is followed
by several stages of optimization. The increase in affinity and
selectivity of a ligand towards its biological target must be
accompanied by an optimization of beneficial pharmacoki-
netic properties. This involves the absorption of the drug, its
distribution and metabolism in the body, along with its
excretion and toxicity.[40±42] The actual validation of a drug is
subsequently performed in several phases of clinical trials.

The rapid and reliable identification of potent, high-affinity
ligands is of utmost importance in view of the overwhelming
number of characterized receptors expected from the genome
projects.[43, 44] Given the limited resources available, the proof
of concept for the relevance of a particular therapeutic target
has to be assessed in the early phase of drug development.
Presently, there are two complementary approaches in the
search for new lead structures: experimental (high-through-
put) screening,[45, 46] involving the in vitro testing of large
compound libraries, and virtual screening[47, 48] or rational
design,[49±51] which is based on available information about the
structure of the biological target and/or already characterized
ligands.

Experimental random screening originated from methods
of traditional drug research. Large compound libraries of
synthetic and natural compounds are tested for possible
activity in a bioassay, independent of their actual chemical
structure.[52, 53] In recent years, this method has been promoted
extensively by the use of robotic systems to achieve high-
throughput testing[54] along with methodological develop-
ments towards combinatorial chemistry,[55±59] and automated
parallel synthesis. Using these techniques, libraries with
several tens of thousands of compounds can be easily
synthesized in a short time starting from a few reagents.
However, the hit rates obtained by these time- and cost-
intensive methods, also termed ™irrational∫ because of their
untargeted character (™as many as possible and as rapidly as
possible∫), are frequently less than one tenth of a percent of
the number of compounds tested.[60, 61] Moreover, this method
usually ignores knowledge of the features of the biological
target. As a consequence, nonrandom or targeted approaches
to screening have been developed. Here, the test compounds
are preselected by computer methods to maximize their
pairwise diversity, for example with respect to chemical
properties,[62] the expected favorable pharmacokinetic behav-
ior,[63, 64] or the biological target molecule.[65±69]

Rational drug design follows a different approach. Starting
from a known or hypothetical mode of action or binding
mechanism, a lead structure is rationally designed and
subsequently tested experimentally. The obtained results are
fed back into a design cycle as new information (Fig-
ure 1).[51, 70] Impressive results have been obtained with this
strategy, as presented, for example, in the recently published
studies on the discovery of inhibitors of DNA gyrase[71] or
matrix metalloproteinase 13.[72] Although this approach is still
in its infancy and has only recently profited from advances in
computer technology and methodology,[73, 74] there are already
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Figure 1. General approach for the rational design of inhibitors. Starting
with discovered or previously synthesized compounds and biological
testing, information about the mechanism of action or binding mode is
used as a starting point for a subsequent design cycle assisted by
computational methods.

a fair number of examples in which the development and
optimization of drug candidates have strongly profited from
this approach[75±79] (Table 1).

Furthermore, a number of drugs have already been
introduced into therapy, which were discovered by this
strategy, or where rational design has played a key role in
the discovery process, for example, the angiotensin-convert-
ing-enzyme (ACE) inhibitor captopril (1),[147] the carboanhy-
drase inhibitor dorzolamide (2),[77] the HIV-protease inhib-
itors saquinavir (3), indinavir, ritonavir, and nelfinavir,[148] and
the sialidase inhibitors zanamivir (4) and oseltamivir
(Scheme 1).[149]

The strategy to be followed in rational design depends on
whether the three-dimensional structure of the biological
target molecule is known or not. In the latter case, ™quanti-
tative structure ± activity relationships∫ (QSAR meth-
ods)[150±154] can be used to establish a relationship between

Scheme 1. Drugs used in therapy, whose development was significantly
supported by rational design.

molecular structure and biological activity for a series of
active compounds. These models do not only explain the
relative differences among the observed affinities, but also
allow an affinity prediction for unknown compounds. An
alternative procedure is the generation of a pharmacophore
model from a series of active compounds.[155] Here, the
molecular properties of the active compounds are represented
in geometric terms, which are a prerequisite for biological
activity. In a subsequent step new, potentially active, candi-
date molecules are retrieved from a compound library that
obey the pharmacophore hypothesis.[156] In addition, the
results from QSAR methods provide some insight into the
structural requirements of the receptor responsible for the
derived structure ± activity relationship. This information can
also be used to generate mini- or pseudoreceptor mod-
els.[157±160]

The gradually increasing number of structurally character-
ized macromolecular receptors[2] (Figure 2) provides the basis
for any structure-based design of active compounds. Receptor
geometries are predominantly determined by crystal-struc-
ture analysis. The obtained geometries are assumed to be
relevant also for the conditions in solution.[161±166] Using
information about the properties of the ligand-binding site
along with the assumption, based on the lock-and-key

Figure 2. Total number of entries N stored in the protein databank PDB[2]

(light gray bars) and entries newly deposited every year (dark gray bars;
status January, 2001).
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Table 1. Proteins, for which inhibitors were discovered or optimized by rational
drug design.

Protein References

aldose reductase [80, 81]
calmodulin [82]
carboanhydrase [83 ± 86]
cyclooxygenase-2 [87, 88]
elastase [89 ± 91]
FKBP12 [92, 93]
gyrase [94]
HIV protease [95 ± 103]
papain [104]
purine nucleoside phosphatase [105]
renin [106 ± 109]
reverse transcriptase [110 ± 117]
selectin [118 ± 121]
sialidase (neuraminidase) [122 ± 132]
streptavidin [133 ± 136]
thermolysin [137]
thrombin [138 ± 145]
thymidylate synthase [146]
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principle, that a potent ligand must exhibit significant
structural and chemical complementarity with the binding
pocket, two strategies for computer-aided drug design are
possible: in de novo design, novel leads are generated in the
binding pocket starting from prepositioned seed atoms or
fragments that are subsequently grown into entire mole-
cules.[167, 168] Alternatively, a compound library can be
screened for ligands in agreement with the binding-site
requirements. The individual molecules are flexibly docked
into the binding site.[169] In both cases, a fast prediction of
ligand affinity towards the receptor is the most crucial step:
only if this assessment is performed with acceptable accuracy
and reliability can new leads be discovered by computational
methods. This latter strategy is known as virtual screen-
ing.[47, 48, 170] Besides considerably reducing the time and costs
of the development, more importantly, the structural insights
and affinity information learned can be used subsequently for
lead optimization.

Two aspects determine the success of computer-aided
structure-based ligand design: the generation of reasonable
ligand-binding modes (configuration-generation problem) and
the recognition of those binding modes that correspond best
to the experimentally given situation based on a reasonable
estimate of the expected binding affinity (structure and
affinity prediction problem).[171] An objective test of docking
methods performed in 1997[172] confirmed the assumption that
recognizing near-native geometries and predicting their
affinities could be achieved only with limited success,[173±175]

whereas the problem of generating reasonable ligand orien-
tations is considered to be virtually resolved,[50, 176] at least for
proteins with rather rigid binding pockets, not involving any
water molecules in binding and without any change in
protonation state of either ligand or protein upon binding.[177]

In this review, our current knowledge of the description
and prediction of binding affinities of small-molecule ligands
to proteins will be summarized. In addition, we will present
some of our own recent results on this topic which, on the
one hand, give a better understanding of the thermodynamic
aspects of ligand binding and, on the other hand, provide
a clear improvement in computer docking and virtual screen-
ing.

2. Binding Affinity as a Result of Inter- and
Intramolecular Contributions–Macroscopic Effects
Resulting from Microscopic Events

2.1. 3D Receptor ±Ligand Structures–Windows to the
World of Interactions

3D structures of receptors (and ligands) do not only form
the basis for structure-based drug design. Many of the aspects
of ligand-binding described in the following would still be only
superficially understood if we did not have the facilities to
study them on a molecular level. Protein crystallogra-
phy,[7, 8, 178] complemented by high-resolution NMR spectro-
scopy,[9±11] provides us with the required information about the
arrangement of the atoms in space.

With respect to the study of protein ± ligand complexes, it
must be kept in mind that X-ray diffraction hardly differ-
entiates between isotopes and elements of similar atomic
number because of their comparable diffraction power.
Except for protein structures at very high resolution, the
positions of terminal N and O atoms, for example, in
asparagine and glutamine, can only be assigned on the basis
of a self-consistent hydrogen-bond network. Similar problems
occur for the imidazole ring of histidine which can adopt two
virtually indistinguishable orientations. Moreover, the posi-
tions of the poorly diffracting hydrogen atoms remain
undetermined. This is of particular importance in the case of
H atoms of conformationally flexible groups (for example,
hydroxy or amino groups), as well as for groups that can be
(de)protonated. However, a consistent picture of the local-
ization of (polar) H atoms and the adopted protonation state
can usually be assigned by analyzing the atoms in the
neighborhood.[179, 180]

The relevance of the protein geometry obtained by crystal-
structure analysis is mainly determined by the quality of the
studied crystals. Resolutions below 1.5 ä (coinciding with the
mean length of a covalent bond) are rarely obtained for
protein crystals; values between 2 and 3 ä are more usual.
Atomic resolution is achieved below 1.2 ä. Along with
techniques for experimental phase determination, insights
into the electronic structure of molecules[181,182] and the
localization of polar H atoms can be achieved. The estimated
standard-deviation value in atomic coordinates is inherently
related to resolution, for example, for a resolution of 2.5 ä
this value is about 0.4 ä.[183±185] This has to be considered
whenever intermolecular interactions are discussed on the
basis of protein crystal structures.

Furthermore, crystallography performs an averaging in
time and space of the individual molecules forming the
crystals.[163] Crystal contacts between neighboring molecules
can result in intermolecular interactions, which may affect
parts of a structure. Besides positional disorder, which results
in distinct occupancies of alternative atomic positions, dy-
namic disorder also results from thermal motion of the atoms
about their equilibrium positions. Even for atoms with an
average Debye ±Waller factor (B factor) of 20 ä2, the mean
atomic displacement from equilibrium amounts to 0.5 ä.
Moreover, because of time and space averaging during data
collection and the requirement for an unperturbed periodic
arrangement, only spatially restricted atoms contribute con-
structively to diffraction and thus only their positions can
subsequently be located.

This applies especially to water molecules which can make
up to 70% of the number of atoms in a protein crystal.[186, 187]

While the water molecules of the first hydration shell
surrounding protein or ligand are generally well-ordered,
their mobility increases with their distance from the molecular
surface.[188]

Moreover, multiple binding modes of ligands can occur as a
result of spatial averaging. In such situations, the same ligand
can occupy several energetically equivalent orientations in the
binding pocket. This case is especially true for weakly binding
ligands. In addition, deviating binding modes can occur in
different polymorphic forms of the crystalline state. Under
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kinetically controlled conditions[190±192] deviating packing
arrangements can be formed, which result in different crystal
structures of distinct physicochemical properties.[189] In the
case of crystals of proteins or protein ± ligand complexes,
these ™polymorphs∫ are usually referred to as ™different
crystal forms∫. Nevertheless, often they exhibit deviating
(enzymatic) properties; for example, depending on the
crystallization conditions, lipase crystals can be obtained in
an ™open∫ or ™closed∫ form.[166]

In summary, any referral to ™the∫ crystal structure of a
compound or protein ± ligand complex has to be regarded
with some care in the light of these effects that could lead to
multiple crystal forms.

2.2. Factors Determining Ligand ±Receptor Binding
Affinity

The selective binding of a small-molecule ligand to a
particular protein is determined by a mutual structural and
energetic recognition.[193±195] Ligands can interact either co-
valently or noncovalently with their biological target.

The noncovalent, reversible association of receptor (R) and
ligand (L) to form a receptor± ligand complex (R�L�) gener-
ally occurs in an aqueous, electrolyte-containing solution
[Eq. (1)].

Raq.�Laq. � R�L�aq�� (1)

Under thermodynamic equilibrium conditions, this reaction
is determined by the standard Gibb×s free energy (or free
enthalpy, used in the following) of binding �G�. This quantity
is related to the experimentally determined association
constant KA (or its reciprocal dissociation or inhibition
constants, KD or Ki , respectively) [Eq. (2)]. �G� is composed
of an enthalpic (�H�) and an entropic (T�S�) portion. Trefers
to the absolute temperature.[196, 197] In place of �G�, the term
(binding) affinity is used to describe the tendency of a
molecule to form a complex with another one.

KA � K�1
D � K�1

i � �R�L��
�R� �L�

�G� � �RT lnKA � �H��T�S�
(2)

According to Equation (3), with �0
i as the chemical

standard potential of the species i, �G� can also be under-
stood as a function to describe the stability of the complex
with respect to free ligand and uncomplexed receptor.[198, 199]

�G� � �
o

R�L�aq�� � (�o

Raq� � �
o

Laq�� (3)

Experimentally determined inhibition constants fall into a
range between 10�2 and 10�12�, which corresponds to a Gibbs
free standard enthalpy of binding of �10 to �70 kJmol�1 at
T� 298 K.[194] A change in free enthalpy of 5.7 kJmol�1 at this
temperature alters the inhibition constant by one order of
magnitude. A comparison of affinities of reversibly binding
ligands shows that the increase in binding affinity is about
6.3 kJmol�1 per atom for molecules with up to 15 non-

hydrogen atoms. Moreover, for larger ligands the affinity is
only slightly dependent on the molecular weight.[200]

It is generally accepted that electrostatic interactions
determine noncovalent ligand ± receptor binding. They com-
prise salt bridges, hydrogen bonds, dipole ± dipole interac-
tions, and interactions with metal ions. Furthermore, solvation
and desolvation contributions, and the mutual spatial com-
plementarity in van der Waals interactions are of utmost
importance.[199, 201±203] The latter aspect has been summarized
by Dunitz and Gavezotti in the context of attractive or
repulsive interactions in molecular crystals as ™empty space is
wasted space∫.[204] Similar considerations have been found for
protein ± ligand complexes.[93] Additional effects are deter-
mined by intramolecular changes of receptor (R�R� and
ligand (L�L�) during complex formation.[194, 195]

2.2.1. Electrostatic Interactions

Pauling already highlighted the importance of hydrogen
bonding[205, 206] for the structures of proteins and their ligand
complexes.[207] Nevertheless, even today, no consensus view on
the relative contribution of hydrogen bonding to the thermo-
dynamics of protein folding and ligand binding has been
established.[208±211]

Hydrogen bonds result from an electrostatic attraction
between a hydrogen atom bound to an electronegative atom
X (usually N or O) and an additional electronegative atom Y
or a �-electron system. Distances of 2.5 ± 3.2 ä between
hydrogen-bond donor X and acceptor Y and X�H ¥¥¥Y angles
of 130 ± 180� are typically found.[206] Whereas no or only a
slight dependency of the hydrogen-bond strength with angular
changes are observed in the range of 180� 30�,[212] shorter
distances down to 2.3 ä result in a more covalent bond
character and a larger binding energy,[213] although, the latter
aspect does not hold in general.[214, 215]

As a result of the electrostatic nature, the strength of a
hydrogen bond depends on its microscopic environment: the
shielding of electrostatic interactions depends on the local
dielectric constant � of the surrounding medium, which means
that the Coulombic interaction energy is proportional to ��1.
While � values of 1 ± 20 (mostly 2 ± 8) are assumed for the
protein interior, the value at the protein periphery, next to the
surrounding water, is about 80.[216, 217] Furthermore, in close
proximity to polar groups a higher dielectric constant is
expected compared to a nonpolar environment.[218] This also
applies to more conformationally flexible regions of the
protein.[219] Therefore, buried hydrogen bonds are regarded as
more important for protein ± ligand interactions than those
formed in solvent-exposed regions.[220, 221]

The importance of water in the overall inventory of
interactions is further indicated by the fact that only 1 ± 2%
of all buried N�H and C�O groups of protein amide bonds do
not form a hydrogen bond.[222] Prior to complex formation, the
functional groups of the uncomplexed receptor and the free
ligand are involved in hydrogen bonds to surrounding water
molecules in the solvent. In the complex, they are replaced by
hydrogen bonds of comparable strength formed between the
ligand and the receptor. It is hence the difference in the free
enthalpies of these contributions to the hydrogen-bond
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inventory that ultimately determines whether hydrogen
bonding contributes to binding affinity or not.[223±225] Buried
polar groups of a ligand or protein that remain unpaired are
thus regarded as highly detrimental to complex formation.[220]

As an upper limit in such unfavorable situations, a free-
enthalpy contribution of 29 kJmol�1 has been estimated.[226]

On the other hand, these considerations underline why
electrostatic interactions and hydrogen bonds are frequently
the predominant contribution to the specificity of molecular
recognition.[201, 210]

At physiological pH values (ca. 7.4), it is assumed that in
proteins the guanidine side chain of arginine (pKa� 12.5) and
the terminal amino group of lysine (pKa� 10.8) are proto-
nated, whereas the carboxy groups of aspartic (pKa� 3.9) and
glutamic acid (pKa� 4.1) are deprotonated (pKa values ac-
cording to reference [227]). Even more complex to predict are
the properties of histidine residues (pKa� 6.5). Their exact
protonation state will depend upon the dielectric conditions
imposed by the local environment. These can change upon
ligand binding (Figure 3).[228, 229] If the bound ligand provides a
sterically suitable arrangement of groups oppositely charged
to the protein residues, attractive electrostatic interactions, so-
called ™salt bridges∫, can be formed (Figure 4).[230]

Figure 3. Impact of the protein environment on the pKb values of a basic
ligand group (upper row) and pKa values of an acidic ligand group (lower
row) compared to aqueous solution (pKH2O

b and pKH2O
a �.

Figure 4. Examples of patterns of special hydrogen bonds: a), b) bidentate
ionic (™salt bridges∫), c) C�H ¥¥¥� interaction.

The contributions of hydrogen bonds and salt bridges to
binding affinity have been estimated, however, the derived
values must be considered with respect to the origin of these
data. Evidence from protein-mutation studies suggest values
for the interaction between uncharged partners of �G��
�5� 2.5 kJmol�1.[210, 223, 231] Similar values originate from
investigations of structures and solution energies of crystalline
cyclic dipeptides[232] and studies estimating the contribution of

intramolecular hydrogen bonds to the stability of pro-
teins.[233±235] In contrast, values of �10 ± � 20 kJmol�1 have
been reported for charge-assisted hydrogen bonds and salt
bridges.[231, 236] The interpretation of the experimentally de-
termined ™apparent∫ binding contributions suffers from one
important problem common to all these studies: the measured
quantities correspond to the ™intrinsic∫ contribution of an
interaction only if superimposed effects can be exclud-
ed.[231, 237, 238] For example, the contribution of a hydrogen
bond was initially reported by Williams and co-workers to be
about �25 kJmol�1.[239, 240] Later, this estimate was reduced
to �1 to � 7 kJ/mol�1 because of incorporation of initially
neglected effects.[241, 242] Similarly, Andrews et al. overestimat-
ed the contribution of hydrogen bonds to complex formation
because they assumed too large values for the entropic
contributions that are detrimental to binding.[203]

Hydrogen bonds also influence ligand binding by their
strong directional nature. Besides theoretical[243] and spectro-
scopic investigations, the analysis of crystal data primarily
provides important information about their geometry.[244, 245]

Carbonyl and carboxylate oxygen atoms form interactions
mainly along the direction of their lone-pair electrons;[246, 247]

for carboxylates the lone-pairs in the syn position are
preferred to those with anti orientation.[244, 248, 249] A compre-
hensive compilation of the geometries of nonbonding inter-
actions observed in crystalline solids is given in the IsoStar
database[250] (Figure 5).

Figure 5. Composite picture of intermolecular interactions as observed in
the crystal packing of small molecules compiled in the database IsoStar.[250]

Shown are the arrangements of hydroxy groups around aliphatic ketones
(a), aliphatic ethers (b), and aliphatic esters (c) as central groups.

Much weaker, but equally directional[251] hydrogen bonds
are known between C�H ¥¥¥O, C�H ¥¥¥N, C�H ¥¥¥�-systems,
and C�H ¥¥¥ Cl[252±256] that also occur in more hydrophobic
regions of proteins. Significant contributions to ligand-binding
affinity also arise from so-called � ±� interactions[257, 258]

between aromatic groups of ligands and side chains such as
phenylalanine, tyrosine, or tryptophan.[259±261] Furthermore,
interactions between cations, such as tetraalkylated amines,
and aromatic residues are observed.[262±264] The latter play a
significant role in the binding of positively charged ligands to
the nicotinic acetylcholine receptor.[265, 266] Interestingly, com-
parative calculations on the strength of salt bridges versus
cation ±� systems in aqueous solution revealed an up to
10 kJmol�1 greater contribution to binding affinity by the
latter type of interactions.[267] Coordinative bonds of ligand
functional groups (e.g. hydroxamates, carboxylates, phos-
phates, thiols) to protein-bound metal ions also stabilize
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receptor ± ligand complexes.[268, 269] . ™More subtle∫ electro-
static contributions such as dipole ± induced dipole, dipole ±
quadrupole, and quadrupole ± quadrupole interactions to
protein ± ligand binding were found in highly resolved car-
bonic anhydrase II ± ligand complexes. There, the electrostatic
interactions were modified systematically by replacing the
benzyl hydrogen atoms with fluorine atoms in N-(4-sulfamyl-
benzoyl)benzylamine.[270]

2.2.2. Solvation and Desolvation

In biological systems, molecular recognition between two
molecules takes place in an aqueous environment. Thus, in
addition to its role in the energetics of hydrogen bonds, as
described in the previous section, water has an additional
influence on the formation of protein ± ligand com-
plexes.[271±273]

In the condensed bulk phase, water molecules form a
network of three to four hydrogen bonds per molecule.[205]

Similar behavior is also found for about 80% of the water
molecules that mediate interactions between protein and
ligand, as evidenced by the analysis of 19 highly resolved
crystal structures of protein ± ligand complexes.[274] Assuming
optimal geometry for these solvent-mediated interac-
tions, a contribution to binding affinity of �10.5 to
� 12.5 kJmol�1[275, 276] and �7 kJmol�1[277] has been estimated.
The latter value results from an entropic contribution
(�30 Jmol�1 K�1, corresponding to 9 kJmol�1 for �T�S at
298 K)[278] and an enthalpic contribution (�16 kJmol�1)[279]

which corresponds to the transfer of a water molecule from
the bulk phase into the binding epitope.

Analyzing the topography of the surrounding molecular
surfaces, it becomes evident that interstitial water molecules
in the protein ± ligand interface preferentially occupy cavities
in the protein surface and less frequently reside in depressions
on the ligand surface (Figure 6).[277, 280, 281] A series of highly

Figure 6. Schematic representation of water molecules mediating an
interaction between protein and ligand; a) more frequently observed
situation with a water molecule strongly bound to the protein; b) water
molecule that is more strongly bound to the ligand (Figure adapted from
reference [277]).

resolved crystal structures of the oligopeptide-binding protein
(OppA) accommodating different Lys-xxx-Lys ligands (xxx:
natural and non-natural amino acids)[282, 283] shows that, in
these complexes, water molecules act as mediators to comple-
ment the side-chain residues xxx of different size, whereas the
protein structure (apart from the rotation of the side chain in
Glu32) remains almost unchanged (Figure 7).

Figure 7. Superposition of the binding pockets extracted from four
complex structures of the oligopeptide binding protein (OppA; white)
with ligands Lys-xxx-Lys; for each example only the central xxx residue is
shown in a different color (orange: Ala (PDB-Code 1jet), violet: Trp
(PDB-Code 1jev), green: Glu (PDB-Code 1jeu), light blue: Lys (PDB-
Code 2olb)). The water molecules are displayed as spheres with corre-
sponding colors. The rigidity of the binding pocket (apart from Glu32) is
obvious, together with a cluster formation of several water molecules.

However, the water molecules do not move without
restriction within the ligand-binding pocket. In each case,
they occupy energetically favorable, partially conserved
positions (Figure 7).[277, 284±286] Interestingly, the binding con-
stants vary in total by only one order of magnitude even for
the exchange Trp�Ala and Lys�Glu as xxx.[283]

The unique role of water compared to other solvents–
forming a tetrahedrally connected network and simulta-
neously occupying only an exceptionally small molecular
volume[287±289]–also emerges in the desolvation of proteins
and ligands upon complex formation. This step involves not
only the rupture and reformation of hydrogen bonds to
functional groups, but also the reorganization of the water
structure at the interface. This is reflected both in the
enthalpic and entropic contributions to the binding affini-
ty.[240, 290±293]

The fact that the transfer of a nonpolar compound or a
nonpolar surface portion into water is a) highly unfavorable,
b) associated with a reduction in entropy at room temper-
ature, and c) correlated to an increase in heat capacity has
been summarized as the ™hydrophobic effect∫.[233, 294±298] First
introduced by Frank and Evans[299, 300] the ™iceberg model∫
assumes that during the hydration of a nonpolar compound a
reduction in the number of hydrogen bonds between water
molecules occurs, but that water molecules next to the
interface form stronger hydrogen bonds than those in the
bulk water phase. Accordingly, Silverstein et al.[301] calculated
a free enthalpy of �G� 2.0 kJmol�1 for the cleavage of a
hydrogen bond in pure water, whereas the same step involving
water molecules in the first solvation sphere around argon
atoms requires a free enthalpy of �G� 2.6 kJmol�1. This
effect results in a clathrate-type restructuring of the adjacent
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water shell along with a partial immobilization of the water
molecules.[302±304]

Whereas the enthalpic contribution almost cancels out for
this process at room temperature (fewer but stronger hydro-
gen bonds instead of many such bonds of medium strength),
the entropy decreases because of a higher ordering of the
water molecules.[301] This step is entropically disfavored, but
only up to a critical temperature Ts which depends on the
nature of the compound to be transferred. At Ts the entropic
contribution to the transfer vanishes.[297, 302] On the opposite
side, for T�Ts, the burial of a hydrophobic surface upon
complex formation corresponds to a favorable entropy-driven
process (�H	 0, �S� 0). This view is supported by spectro-
scopic studies of surface-specific vibrations of molecular
arrangements at the CCl4/H2O or hydrocarbon/H2O interface.
Although these studies indicate rather weak hydrogen bonds
among the water molecules at the phase interface, the
molecules mutually orient because of interactions with the
organic phase.[305]

This classical view, however, is not generally accept-
ed.[298, 302] An alternative approach does not regard the
structuring of the water molecules as the main reason for
hydrophobic interactions. Instead, it involves a positive
enthalpy resulting from the rupture of several hydrogen
bonds in order to create a cavity in the water structure that
subsequently accommodates the nonpolar compound.[306, 307]

In agreement with this hypothesis, calorimetric measurements
found that contributions of 25 ± 100% of the protein ± ligand
binding enthalpy originate from solvent reorganization.[308]

The contribution of hydrophobic interactions to the free
enthalpy in protein folding or protein ± ligand complex
formation can be regarded as proportional to the size of the
hydrophobic surface buried during these processes.[309±314] This
allows quantitative characterization of the effects in-
volved.[315, 316] Solubility studies of hydrocarbons in water
revealed �0.10 to � 0.14 kJmol�1 ä�2 as a contribution to
hydrophobic interactions.[309, 310, 317, 318] The correlation of the
hydrophobic surface buried upon receptor± ligand binding
with experimentally determined binding affinities revealed
values of �0.11 to � 0.24 kJmol�1 ä�2 as contributions to the
free enthalpy.[240, 319, 320] The burial of a methyl group (	25 ä2)
contributes �2.75 to � 6 kJmol�1, thus increasing the asso-
ciation constants at 298 K by a factor of 3 ± 11. In contrast,
however, values of �0.08 to � 0.64 kJmol�1 ä�2 were deter-
mined in mutation studies for the influence of hydrophobic
interactions on the stability of proteins.[321±324] Again, most
values obtained suggest larger contributions compared with
those resulting from solubility studies. This finding can be
explained by a cooperative effect (see Section 2.2.4).[325] Once
such effects are neglected, the sole consideration of the size of
the buried surface reveals the reported higher contributions
per ä2. Huang and Chandler have recently suggested that for
small hydrophobic molecules a scaling with molecular volume
is more appropriate, whereas for larger hydrophobic mole-
cules scaling with the molecular surface reveals a better
correlation.[326]

Hydrophobic interactions are also regarded as the main
driving force for conformational changes of the receptor upon
ligand binding. This induced fit can be viewed as a ™collapse∫

of the receptor about the ligand.[199] As an extreme case, the
binding of trifluoperazine (5) to Ca2� calmodulin induces a
conformational change of the protein from an extended to a
compact form (Figure 8).[327] Crystal structures of 3,4,5-
substituted piperidine derivatives (e.g. 6) bound to renin
show an induced adaptation of the binding pocket to
accommodate the attached substituents (Scheme 2).[328] Sim-
ilar cases have been described for protein ± ligand complexes
of aldose reductase[329] and glycogen phosphorylase.[330]

Figure 8. Superposition of the N-terminal domains of calmodulin as
uncomplexed (dark gray: PDB code 1lin ) and ligand-bound enzyme (light
gray: PDB code 3cln). The four bound trifluoperazine molecules (5)
indicate the induced collapse of the protein upon ligand binding. Only the
backbone trace of the protein is shown in each case.

Scheme 2. Ligands of Ca2�-calmodulin (5) and renin (6) that induce an
adaptation of the protein binding pocket.

A comparable orientation of drugs with rather deviating
shapes in the same binding pocket originates from induced-fit
adaptations as a consequence of favorable hydrophobic
interactions. An impressive example is the binding of
nevaripin (7), �-APA (8), or HEPT (9 ; Scheme 3) to HIV-1
reverse transcriptase.[331] While none of the C-� atoms shift
position by more than 2.7 ä, any structural adaptation of the
protein is a response to changes in the substitution pattern of

Scheme 3. Inhibitors of HIV-1 reverse transcriptase.
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the inhibitors (Figure 9).[199] HIV-1 reverse transcriptase has
to adapt its conformation consecutively while binding to the
substrate RNA. Accordingly, it can be assumed that the
observed inhibitor binding freezes different ™snapshots∫
along this conformational transition path.

Figure 9. Induced fit of the binding pocket of HIV-1 reverse transcriptase
resulting from the binding of nevirapin (7; cyan: PDB-Code 1vrt), �-APA
(8 ; green: PDB-Code 1vru) and HEPT (9 ; violet: PDB-Code 1rti). The
protein residues are color coded similar to the ligands. For clarity, only the
amino acids which are next to the ligands in a sphere of� 4 ä and are
involved in pronounced conformational changes upon binding of the
different ligands are shown.

2.2.3. Intramolecular Changes of Ligand and Receptor

Upon complex formation, the change in degrees of freedom
of the different components involved results in a change of
entropy.[332] If the complex formation, neglecting any involved
water molecules, is regarded as a bimolecular association step,
each component loses three degrees of translation and
rotation, while six new vibrational degrees of freedom are
created.[290, 333±335] Although partitioning of the standard
enthalpy into individual contributions is formally impossible
for such processes in solution,[336] this simplification provides
first insights into the influence of flexibility and mobility of
protein and ligand on complex formation.[332]

The application of the Sackur ±Tetrode approach or
Trouton×s Rule[337] requires the arguable assumption[338] that
the results are transferable to solution processes[198, 339] . If so,
for the complete immobilization of a molecule a loss in
entropy of about�420 Jmol�1 K�1 results.[340] However, losses
about half this size (	 � 200 Jmol�1 K�1[290, 333, 334, 343] corre-
sponding to 60 kJmol�1 at 298 K) were found experimentally.
The difference can be attributed to the residual mobility of
molecules in the complex. The latter is estimated by consid-
ering the experimentally observed motion in the crystals (e.g.
lysozyme[341] or insulin[342]) or the entropy changes involved in
inter- and intramolecular reactions. Even smaller contribu-
tions of 9 ± 45 kJmol�1 were found by Searle and Williams for
the melting or sublimation of hydrocarbons or polar organic

molecules.[292] This is in agreement with results for the
association of rigid cyclic dipeptides in the solid, liquid, and
gas phases.[344] Hermans and Wang calculated 29 kJmol�1 (at
300 K) for the free enthalpy of binding of benzene to a
lysozyme-T4 mutant resulting from the partial loss of trans-
lational and rotational degrees of freedom. This calculation
also allowed the estimation of the remaining free space in the
binding pocket available for motion of the benzene molecule.
Positional deviations of 0.6 ä in atomic coordinates and 10 ±
15� in rotation about the normal vector of the ring plane were
found as root-mean-square deviations in a mutual super-
position.[345]

Upon binding, conformational mobility is restricted, re-
ducing the internal degrees of freedom of rotatable bonds.
Such entropic contributions to the free enthalpy of binding
were suggested to fall into a range between 0.5 kJmol�1,[236]

2.5 kJmol�1,[292, 343] and 4 ± 6 kJmol�1,[290, 333, 334] at 298 K. For
amino acids, the probabilities of rotameric states were
calculated based on observed conformational distributions
of solvent-exposed side chains in protein crystals. These
probabilities were used to estimate the entropy loss for the
restriction of their conformational mobility.[346, 347] Contribu-
tions to the free enthalpy from 0 (for Ala, Gly, Pro) to
8.7 kJmol�1 (for Gln), with a mean value of 3.7 kJmol�1 per
residue, were suggested.

Experimental evidence indicates that ligands frequently
retain considerable residual mobility in the bound state. An
increase in mobility of the protein can even favorably
influence the free binding enthalpy.[348] Residual mobility is
found, for example, for the binding of camphane, adaman-
tane, or thiocamphor to cytochrome P450cam.[349] Without
forming a hydrogen bond, the ligands rotate freely in the
binding pocket. They are, therefore, hydroxylated nonselec-
tively. The binding of DNA to the C-terminal domain of
topoisomerase 1[350] demonstrates that complex formation is
not solely associated with a restriction of molecular mobility.
While some of the protein residues become more highly
ordered, others become more mobile. For the binding of a
hydrophobic mouse pheromone to mouse major urinary
protein, NMR relaxation studies[351] showed that an increase
in protein backbone entropy reveals a considerable favorable
contribution to the free enthalpy of binding, which is of the
same order of magnitude as other contributions. Similarly,
Weber et al.[134, 352] observed by crystallographic and thermo-
dynamic studies of natural and synthetic streptavidin inhib-
itors that the ligand with the highest binding affinity also
experiences the largest residual mobility in the complex.

An alternative strategy to compensate for entropic losses
caused by ligand immobilization results from conformational
preorganization in solution. In the case of the thrombin
inhibitor �-Phe-Pro-boro-Arg,[353] a ™hydrophobic col-
lapse∫[354] in aqueous solution minimizes the hydrophobic
surface of the �-Phe and Pro side chains. At the same time, a
conformation is adopted that strongly resembles the receptor-
bound conformation.[355] Interestingly, an inverse ™hydrophilic
collapse∫ of the immune suppressors CsA and FK506 is made
responsible for their high membrane permeability and
suggests a formulation of the administered drugs in olive
oil.[356]

Angew. Chem. Int. Ed. 2002, 41, 2644 ± 2676 2653



REVIEWS G. Klebe and H. Gohlke

Besides entropic contributions, enthalpic differences be-
tween solution and receptor-bound conformations of a ligand
also influence the free binding enthalpy. Comparing comput-
ed force-field energies of the protein-bound conformations
with those of the global minima in vacuum revealed differ-
ences between 0 ± 167 kJmol�1 for 33 compounds, with a
mean value of 67 kJmol�1.[357] For three different dihydrofo-
late reductase inhibitors, an unfavorable conformational
energy contribution to binding of 112 ± 296 kJmol�1 has been
calculated.[358] These unrealistically high values result from a
comparison of the receptor-bound conformers with those in
the gas phase. However, such a comparison is of no relevance.
Similar studies based on conformational ensembles produced
from a solvation model suggest that conformational enthalpy
differences amount to less than 12 kJmol�1, thus slightly
disfavoring the receptor-bound state.[359] In addition, Vieth
et al. found that the spatial orientation of ™anchor points∫
responsible for ligand binding to the protein coincide well in
protein-bound conformations with those of minimum-energy
structures.[360] In several cases, conformations were also found
for ligands which deviate slightly from those in the crystal
structure, but have a significantly lower conformational
energy.

It has to be considered that the anisotropic molecular
environment of the protein perturbs the energy barriers
separating different conformational (rotational) states. For
example, this influence has been described by comparing the
enzyme-bound conformation of methotrexate (an inhibitor of
dihydrofolate reductase) with that adopted in its small-
molecule crystal structure.[361] This polarization effect has to
be considered in the development of advanced force fields.[362]

2.2.4. Additivity, Cooperativity, and Enthalpy ± Entropy
Compensation

Approaches based on group additivities [Eq. (4)] or the
additivity of free enthalpy components [Eq. (5)] are frequent-
ly applied to understand and predict protein ± ligand inter-
actions. In this respect, pioneering work was performed by
Andrews et al.[203] and Lau and Pettitt.[363]

�G � �GCH3
��GOH��Gphenyl� . . . (4)

�G � �GH-bridge��Gsolvation��Gconformation� . . . (5)

Already the variation in the absolute contributions dis-
cussed in the previous section demonstrates that this parti-
tioning is not possible in a straightforward way. Strict
application of statistical thermodynamics shows[364] that the
free energy (free enthalpy) is a global property of the system
under consideration. It thus depends on the total configu-
ration space of the system. Hence, while separation of energy
into (pairwise) individual contributions is a reasonable first
approximation, this is, in principle, not valid for entropy[332]

and free energy.[365] As a state function, the free energy is path
independent, however, this does not apply for its components,
as confirmed by nonadditivity in mutation studies.[237, 238, 366±368]

A separation into individual components is possible if the
total system under investigation is separated into mutually

independent subsystems.[364] The latter is questionable, espe-
cially for biological systems featuring weak, noncovalent
interactions which lead to many nearly identical (macro-
scopic) states.[369]

As an alternative, one can focus on the partitioning of the
most dominant part of the free energy [Eq. (6)][365, 369, 370]:

�G � �HH-bridge��Hsolvation��Hconformation� . . .�T�S (6)

This strategy has been used, for example, for the calculation
of ™intrinsic binding energies∫ from free enthalpies of binding
of molecules with groups A, B, or A�B to a protein.[237, 291]

An impressive example for nonadditivity–also[371, 372]

termed ™cooperativity∫–becomes apparent for the correla-
tion of the ™hydrophobic free enthalpy∫ with the solvent-
inaccessible, nonpolar surface. Protein mutation studies and
studies on ligand binding show that the hydrophobic effect
obviously promotes stability and binding in aqueous solution
to a large extent as suggested by solvent transfer measure-
ments (see Section 2.2.2).[315] However, the burial of a part of a
hydrophobic molecular surface at a binding site can induce a
simultaneous cooperative enhancement of neighboring elec-
trostatic interactions.[325, 372]

The contribution of the standard enthalpy �H� and entropy
�S� to the free (binding) enthalpy �G� [Eq. (1)] can be
determined directly from microcalorimetry[373] or van×t Hoff
plots of affinity measurements at different temperatures[374]

(see Section 4). Generally, these experiments do not indicate
any direct correlation between �H� and �G�. Thus, any
interpretation or prediction of binding properties solely based
on enthalpic considerations must be inadequate.[194] A possi-
ble exception might be given for series of closely related
ligands with very similar entropic contributions.

The clear correlation between �H� and �S� (™enthalpy ±
entropy compensation∫) is obviously an intrinsic property of
weak intermolecular interactions.[242, 336] This correlation is
generally observed in (supramolecular) host ± guest[375] and
receptor ± ligand complexes.[293, 376, 377] However, this form of
compensation is by no means a ™general∫ principle.[378, 379] It
can be interpreted that an enhancement of intermolecular
binding is accompanied by a loss in degrees of freedom of
mobility and vice versa. Its existence is of particular impor-
tance for the prediction of receptor± ligand interactions:
whereas the individual enthalpic and entropic contributions
can vary over large ranges, the total change in free enthalpy is
frequently close to zero. As a consequence, small relative
errors in the prediction of �H� and �S� can have significant
influence on �G�.

3. Theoretical Approaches to the Prediction of
Binding Affinities

Studies on the prediction of binding affinities can be
divided into two major categories:
� If the 3D structure of the biological target molecule is not

known the (often qualitative) prediction of the binding
affinity of new ligands is based on the comparison with
known reference structures such as endogenous ligands or
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previously synthesized compounds.[150, 151, 380, 381] The con-
siderable importance[382] of these methods arises from the
fact that many pharmacologically important targets are
membrane-bound proteins, such as G-protein-coupled
receptors (GPCR),[383, 384] ion channels,[385] or transport
proteins.[386±388] As, apart from a few examples, no exper-
imentally determined 3D structure of sufficient accuracy is
available for these systems, usually only indirectly obtained
models can be used.

� If the 3D structure of the receptor is known, binding affinity
predictions are performed considering geometrical and
chemical complementarity between ligands and biological
targets.[173±175, 198, 389±394] Because of the steadily growing
number of spatially characterized receptors (Figure 2), an
increasing impact of the latter strategy is to be expected in
the near future.
In this review, we focus on methods exploiting the 3D

structure of the receptor. As, however, comparative molec-
ular-field analyses (3DQSAR) yield surprisingly good affinity
predictions, merely by learning from the information provided
by a ligand-training set, these methods will be briefly
discussed in the following.

3.1. Approaches without Knowledge of the Receptor
Structure

Affinity prediction of ligands in the absence of information
about the receptor structure assumes that similarity in bio-
logical response is reflected by chemical similarity of the
ligands.[380] Approaches that compare molecules on the one-
or two-dimensional level[395] by means of topological descrip-
tors consider the presence or absence of functional groups by
associated bit vectors (so-called fingerprints). They will not be
discussed here. Similarly, methods based on substructure
mapping,[396] pharmacophore searches,[397] and superposition-
ing of ligands will not be considered.[398±400] Usually, these
methods predict the expected binding affinity only on a
qualitative scale.

In contrast, quantitative predictions can be obtained from
Quantitative Structure ±Activity Relationships (QSAR).[150]

A correlation between structure and biological properties
(e.g. affinity or selectivity) of a molecule is determined with
respect to physicochemical and structural parameters. Clas-
sical 2D-QSARmethods, established by Hansch and Fujita[401]

or Free and Wilson,[402] suffer from the fact that only data sets
of structurally similar ligands can be studied and the spatial
structure, essential for the understanding of receptor ± ligand
interactions, is only vaguely or indirectly considered.[403]

This limitation is relieved in 3D-QSAR methods:[152, 404]

relative differences in the spatial structure of individual
ligands are correlated with a known target property, such as
binding affinity. As a prerequisite, the bioactive conforma-
tions of all ligands have to be considered to be aligned with
each other, which best reflects their assumed arrangement in
the binding pocket.[398] A conformationally rigid example in
the data set could be used as a reference structure for a
subsequent molecular superpositioning.[405] Equally well,
conformations taken from known protein ± ligand com-

plexes,[406, 407] or functional groups in agreement with a
pharmacophore hypothesis can be used.[408, 409] Besides atom-
or group-based superposition methods, molecular fields are
used to maximize their mutual similarity, in particular in
flexible alignments.[398, 400]

In the following, a short description of current 3D-QSAR
methods will be given, with emphasis on CoMFA (Compara-
tive Molecular Field Analysis) and related developments.
Comprehensive reviews in this field have been given by
Kubinyi,[150, 151] Sanz et al.,[410] and van der Waterbeemd.[411]

� The 3D-grid-based CoMFA method,[405] developed from
DYLOMMS,[412] compares a series of molecules in terms of
molecular energy fields. It subsequently correlates field
differences with differences in the dependent target
property, for example, the binding affinity. In its original
implementation, steric and electrostatic interaction ener-
gies are calculated for all molecules in the data set at the
intersections of a grid containing all molecules. This
approach assumes that entropic contributions are constant
across the data set used for the analysis. For each molecule
n, this QSAR is results in the Equation (7):

Affinityn � k��1Sn �1�. . .��MSn,M��1En �1� . . .��MEn ,M (7)

The indices 1, 2, . . . ,M reflect the respective grid points, and
Sn,1,. . . , Sn,M and En,1, . . . , En,M describe steric and electro-
static energies at these points. The coefficients �1, . . . , �M

and �1, . . . , �M are obtained from a system of linear
equations by partial least-squares analysis.[413, 414] Binding
affinities of new molecules, not included in the training set,
can be predicted using the derived model.

While steric and electrostatic fields account for only
enthalpic contributions, attempts have been described to
reflect entropic contributions through the characterization
of hydrophobic properties.[415] These approaches include
fields based on HINT (Hydrophobic Interaction),[416, 417]

molecular lipophilic potentials (MLP),[316] GRID fields[418]

based on an H2O or a DRY probe, or desolvation energy
fields calculated with DelPhi.[419]

� Alternative molecular interaction fields are applied in
CoMSIA (ComparativeMolecular Similarity Indices Anal-
ysis).[420] Here, Gaussian functions are used to describe
steric, electrostatic, and hydrophobic similarities. Similarly,
hydrogen-bond donor and acceptor properties are consid-
ered.[244, 421] Compared to CoMFA, this approach avoids
particularly steep potentials next to molecular surfaces.
Thus, similarity indices are also determined close to the
molecules.

� TheHASL approach (Hypothetical Active-Site Lattice)[422]

is another grid-based 3D-QSAR technique. It tries to
attribute partial activities to grid points within the van
der Waals volume of the ligands. The sum of the values at
all grid points assigned to one molecule reflects the
parameter to be correlated.

� In the Compass method,[423] molecular interaction fields are
calculated in the proximity of the van der Waals surface of
the considered molecules, thus focusing on the area likely
to be involved in receptor± ligand binding. In addition, the
number of descriptors is largely reduced. AQSARmodel is

Angew. Chem. Int. Ed. 2002, 41, 2644 ± 2676 2655



REVIEWS G. Klebe and H. Gohlke

then generated using a back-propagation neural network.
Subsequently, this model is further improved by iteratively
generating and superimposing conformations of the mol-
ecules in the data set.

� In contrast to the previous methods, APEX-3D avoids
molecular interaction fields.[424] Instead, a relationship
between structural properties and observed activity is
automatically established in a stepwise fashion. Molecules
with similar activity are analyzed for corresponding 2D-
topological or 3D-topographical patterns. Using logical
programming, pharmacophores are identified which pro-
vide the basis for molecular superpositioning. Finally, a 3D-
QSAR model is generated based on physicochemical
properties of the pharmacophoric groups and global
molecular properties such as hydrophobicity and molar
refraction.

� The YAK method[158] is based on studies by Hˆltje and
Kier.[425] Putative amino acid residues are placed in space
using a set of ligands to generate a so-called pseudorecep-
tor. YAK selects and orients the amino acid side chains
automatically. If available, crystallographic information,
data from sequence analysis of homologous proteins, or
mutation studies can be considered. This selection and
positioning is iteratively optimized until the computed
interaction energies best reflect the affinity data of the
ligand under investigation. Finally, a pseudoreceptor is
constructed by linking the placed amino acids with poly-
Gly fragments.

3.2. Approaches Based on Knowledge of the Receptor
Structure

The success of docking and de novo design methods
strongly depends on the prediction of binding affinity, purely
based on the spatial orientation of a ligand in the binding
site.[174, 175, 426] The fundamentals of statistical thermodynamics
used to calculate binding affinity are critically summarized in
references [173, 198]. Reviews on applications are given in
references [174, 175, 389 ± 391, 394, 427, 428]. The determi-
nation of molecular interaction fields based on the known
receptor structure is reviewed in reference [429]. Referen-
ces [430, 431] consider special applications and advances in
force fields used in this context. A review on the handling of
electrostatics in macromolecular systems is found in refer-
ences [216, 432 ± 436], whereas references [437 ± 445] summa-
rize the advances in calculating free enthalpy and entropy in
the context of the thermodynamic perturbation theory.

In the following, the methods are classified and described
with respect to their methodological background. This
separation is not always strict, as several techniques combine
different approaches.

3.2.1. Free-Energy-Perturbation Calculations and Linear
Free-Energy Approaches

From a thermodynamic point of view, the rigorous pre-
diction of relative free energies of binding of ligands to
proteins results from free-energy-perturbation (FEP) calcu-

lations [Eq. (8)][446] or thermodynamic integration (TI)
[Eq. (9)],[447] with explicit consideration of solvent molecules
and flexibility of both the receptor and the ligand.[173, 390, 426]

�F � F1�F0 � � kBT ln
�
exp

�
�H1
X�� � H0
X��

kB T

��
0

(8)

�F � F1�F0 �
�1

0

�
�H�
X��

��

�
�

d� (9)

The basis for these approaches is given by the relationship
between the Helmholtz free energy F of a system and the
ensemble average of an energy function describing the system
under consideration.[444, 448, 449] H�(�X) is the energy of the
system as a function of the coordinates (�X) of the particles in
configuration space and a coupling parameter �, kB is the
Boltzmann factor, and T the absolute temperature. The
indices ™0∫ and ™1∫ represent �� 0 and �� 1, respectively. The
configurational ensemble averages are taken either from
Monte Carlo (MC)[450] or molecular-dynamics (MD) simula-
tions.[451] As the difference between free enthalpy and free
energy corresponding to the product of pressure and volume
change experienced in an isothermal and isobaric reaction is
negligible for processes in solution, free enthalpies are also
available.

The method is suitable for studying individual contributions
to the free energy/enthalpy on an atomic level or on the level
of individual subsystems, such as ligand or protein.[238, 452, 453]

However, it frequently encounters problems concerning the
general applicability, which are caused by limited or insuffi-
cient sampling of the configuration space, the accuracy of the
applied force fields, and the dependence of the results on the
protocols used for simulation.[437, 438, 454] Moreover, long sim-
ulation runs are required and they can only allow for minor
chemical differences in the ligands if their relative free
energies/enthalpies are to be predicted reliably.[455±458] Some
case studies, together with more recent approaches, will be
mentioned.
� Postma et al.[448] and Jorgensen and Ravimohan[459] used

FEP-MD and FEP-MC simulations to predict relative free-
energy differences for the binding of benzamindine and p-
fluorobenzamidine to trypsin,[460] or for a set of peptidic
inhibitors to thermolysin.[225] In the latter case, a remark-
able agreement between predicted and experimental values
has been achieved,[461] although only minor structural
modifications (exchange of NH to O by CH2) of the
ligands were studied. For example, the addition of a phenyl
ring to an inhibitor obviously did not result in full
convergence of the computed energies, even after 400 ps
simulation time. Compared to experiment, the predicted
relative free energy had the wrong sign.[457] Moreover,
Graffner-Nordberg et al. stress that all processes combined
with ligand binding–such as a change in protonation state–
must be considered in the computed energies.[229] A
comprehensive review of examples used for the prediction
of protein± ligand affinities is given in reference [442].

� Ota and Brunger[462] combined non-Boltzmann sampling of
configuration space with TI (NBTI). The advantage of this
so-called umbrella sampling results from an artificially
enhanced ligand flexibility caused by reduced internal
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barriers to rotation and a thus augmented sampling of
configuration space. Compared to classical TI, smaller
deviations between calculated and experimental relative
free energies are obtained for benzamidine or benzylamine
binding to trypsin.[463]

� While standard free-energy calculations require time-
consuming sampling of configuration space for each ligand
modification individually, Gerber et al. suggest a simulta-
neous consideration of an entire set of modifications in one
single MD simulation.[464] Assuming a linear separation of
individual contributions, the derivative of each individual
interaction with respect to the coupling parameter � is
determined analytically. Thus the initial gradients in free-
energy contributions at �� 0 allow the estimation of the
contributions in the final state �� 1. Although this method
reduces computational efforts by a factor of 10�3, simu-
lations of the binding of trimethoprim-based inhibitors to
dihydrofolate reductase and NADPH did not reveal a
significant correlation between computed and experimen-
tal results.

� Oostenbrink et al.[465] used a ™single-step perturbation∫
method to estimate relative free binding energies of
endogenous and xenobiotic ligands to the estrogen recep-
tor.[466] Instead of the usual FEP or TI calculations being
performed for each ligand, an artificial reference molecule
is simulated to generate a configuration ensemble that is
representative of all ligands under consideration. Using
Equations (8) and (9), the relative free enthalpy between
two (real) ligands is calculated using the �G difference of
the ligands with respect to the artificial reference molecule.
Although the computational effort is reduced by a factor of
4 ± 6 with respect to classical TI and mean deviations from
experiment of 1.7 kJmol�1 are obtained, it has to be
considered that, for four out of five cases, ligand structural
variations were limited to the presence or absence of
hydroxy or methyl groups.

� Guo et al.[467] introduced a method in which the coupling
parameter � is handled as a dynamic variable. It develops
together with the atomic coordinates of the system follow-
ing Newton×s law of motion. For a series of related ligands
using a set of �s, relative free energies of binding are
simultaneously computed. In the simulation, the different
portions of the ligands all interact with the surrounding
protein, but none of the ligands ™takes notice∫ of any other
one. An efficient mapping of configuration space is
achieved with a significant reduction in computational
effort.[468]

� To circumvent the problems occurring in classical free-
energy simulations by using large, structurally diverse sets
of ligands, a semiempirical method was developed by
äquist et al.[469, 470] They calculated absolute free energies
of binding by considering MD simulations of two physical
states. Polar and nonpolar contributions to the free energy
are approximated linearly, by taking mean values from
simulations of the ligand and protein ± ligand complex in
water. Required weighting parameters are calibrated using
binding affinities of known complexes. However, this
adjustment of energy contributions and the scaling of the
weighting parameters depends on the simulation condi-

tions and the system setup,[471, 472] and, accordingly, the
general scope of the method appears limited.[473]

� Jorgensen and co-workers go one step further, by using an
equation of the form (10):[474, 475]

�G �
�

i

ci�i� const (10)

The physicochemical parameters �i reflect ensemble
average values obtained from MD or MC simulations. The
parameters comprise, for example, the number of hydrogen
bonds formed or the size of the buried hydrophobic,
hydrophilic, and aromatic surface patches. The ci values are
adjusted by multiple linear regression using a training data
set. In this respect the method can be classified as a
regression-based approach (see Section 3.2.3). However,
for the study of HEPT and nevirapin analogues binding to
HIV-1 reverse transcriptase, differently composed Equa-
tions (10) were found, depending on the compilation of the
training set.[475] This raises some suspicion about the
general applicability and transferability of the approach.

3.2.2. Force-Field-BasedMethods and Approaches Based on
Additive Free-Enthalpy Contributions

The approaches described in this section assume partition-
ing of the free enthalpy of ligand-to-receptor binding into a
sum of individual contributions [Eq. (5)] (for this assumption,
see Section 2.2.4).[173, 198, 426] Starting from a ™master equation∫
(ME), individual terms are defined on physicochemical
grounds, whilst avoiding any cross correlations among them.
Furthermore, unlike the methods described in the previous
section (Section 3.2.1), all free-energy contributions are no
longer derived as ensemble mean values, but taken from a
single (or a few) generic structure(s). This is an important
limiting approximation.[173]

� Modeling intermolecular interactions of protein±ligand
complexes by simple molecular-mechanics force-field cal-
culations in vacuum reflects purely enthalpic contributions
to the free enthalpy of binding.[194, 426] By considering only
van der Waals and electrostatic interactions, along with
some intramolecular energy contributions, correlations
with experimentally determined binding affinities have
been obtained for series of closely related ligands, in which
entropic contributions can be assumed to be con-
stant.[476±480] In one example, the result obtained without
the explicit consideration of solvent was explained by the
predominance of van der Waals interactions and solvent-
independent electrostatic contributions.[481]

� A straightforward approach to including solvent effects in
the ™master equation∫ which describes ligand ± receptor
binding is the use of atom-based solvation parame-
ters,[311, 312, 314] usually scaled to the surface portion of
protein and ligand that is buried upon complex formation.
The methods of Vajda et al. ,[482] Weng et al.,[483] Williams
and co-workers,[240, 241, 484] Krystek et al. ,[485] and Novotny
et al.[486] consider contributions that are adverse to binding
as additional terms, which originate from the loss of
translational, rotational, and torsional degrees of freedom
of the molecules (see Section 2.2.3). Krystek et al., Vajda
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et al., and Weng et al. modeled the intermolecular inter-
actions by Coulombic interactions using a distance-de-
pendent dielectric constant; Williams and co-workers used
intrinsic binding contributions of functional groups instead.
For flexible ligands, Vajda et al. additionally[482] determined
the energy difference experienced by intramolecular inter-
actions of the molecule in the free and the bound state.

� The contribution of electrostatic interactions in the pres-
ence of water can be determined as an ™averaged-field∫
approximation or continuum representation of the solvent
by solving the linearized Poisson ±Boltzmann equation[216]

with the method of finite differences[487] or finite ele-
ments.[488] In this context, polar interaction energies of
receptor, ligand, and receptor± ligand complex are com-
pared to each other and determined with respect to the
surrounding solvent, by considering the molecules (with
discrete atomic charges) as regions of low dielectricity
embedded in a medium of higher dielectric constant.[432]

The nonpolar contribution to desolvation is assumed to be
proportional to the size of the surface of both molecules
buried upon complex formation. Entropic contributions
attributed to the loss of mobility and flexibility aremodeled
as described in the previous section. Based on this concept,
methods to predict free enthalpy of binding were suggested
by Froloff et al.,[489] Zhang and Koshland,[490] Hofmann
et al.,[491] Polticelli et al.,[492] and Shoichet et al.[493] Instead of
the Poisson±Boltzmann approach, Zou et al.[494] used the
™generalized Born Model∫ (GB/SA) of Still et al.[495] for the
calculation of polar interaction energies.

� In the MM/PBSA method[440, 496, 497] and related ap-
proaches,[498±500] the free enthalpies for a molecular species
are given by Equation (11):

�G� � �EMM�� �GPBSA/GBSA��TSMM (11)

EMM reflects the mean molecular-mechanical energy,
GPBSA/GBSA is the free enthalpy of (de)solvation obtained by
solving the Poisson ±Boltzmann equation (PB) or using the
generalized Born approach (GB) and a surface-dependent
term (SA). Both contributions are obtained by averaging
over a sample of representative geometries extracted from a
MD trajectory of the species under investigation with explicit
consideration of water molecules and counter ions. The
term�TSMM stands for the entropic contributions of the
considered species, taken from a quasi-harmonic or normal
mode analysis of the MD trajectory. The large scope of
applications of this method demonstrates[501±504] that the
properties of protein ± ligand complexes exhibiting extensive
structural differences can be studied.

� Alternatively, an implicit consideration of the contribu-
tions from solvation and desolvation can also be deter-
mined directly by molecular mechanics.[505] Thereby, the
free solvation energy attributed to a functional group or
amino acid residue is determined using the free solvation
energy of the same group when part of a small molecule.
This latter solvation contribution has to be reduced by an
amount related to the exclusion of solvent molecules
caused by their replacement by other atoms of the macro-
molecular system.

3.2.3. Regression-Based Approaches

As described in the previous section, regression-based
approaches–also called ™empirical scoring functions∫–as-
sume an additivity of individual terms to the total free
enthalpy. However, the individual contributions (weighting
factors or coefficients) of the separate terms describing the
independent variables in the regression equation are deter-
mined either by multiple linear regression, partial least-
squares regression [414] or a neural-network analysis,[506] using a
training set of crystallographically resolved receptor ± ligand
complexes, together with experimentally determined binding
affinities. Based on empirical concepts, the explanation of the
obtained contributions along with their ability to predict
unknown binding affinities justifies the initially assumed
partitioning of the free enthalpy. Common to all regression-
based methods, the results obtained as well as their trans-
ferability to new compound classes depend considerably on
the compilation of the training set.[173] Furthermore, contri-
butions of phenomena rarely observed in the experimental
data, which frequently enough are the unfavorable ones, will
be described insufficiently by the regression analysis.
� The archetype of an empirical scoring function for

protein ± ligand interactions was developed by Bˆhm
(SCORE1).[507] Using a training data set of 45 protein ±
ligand complexes, the regression analysis with respect to
experimentally determined affinities results in a cross-
validated standard deviation of 9.3 kJmol�1. In this anal-
ysis, the sum of contributions to hydrogen bonds, ionic
interactions, buried nonpolar surface regions, and the loss
of (intra)molecular mobility has been considered. Expand-
ing this training set to 82 complexes and considering the
degree of burial of hydrogen bonds in the binding epitope
along with special terms for aromatic and unfavorable
electrostatic interactions, a standard deviation of
8.8 kJmol�1 has been achieved for a prediction data set
(SCORE2).[508] These analyses also showed that the
(relative) contributions of the individual terms depend on
the compilation of the training set. The same holds for
different strategies in partitioning the free enthalpy.

A similar approach has been described by Eldridge
et al.[509] (82 complexes in the training set, ChemScore) and
Wang et al.[510] (170 complexes in the training set, SCORE).
Compared to Bˆhm×s approach,[507, 508] Eldridge et al.[509]

handle contributions for intramolecular flexibility differ-
ently and Wang et al.[510] classify hydrogen bonds as
™strong, moderate, and weak∫, including the occurrence
of interstitial water molecules as mediators of interactions.
An ™evolutionary test∫ demonstrates[510] that the resulting
coefficients only converge if a set of more than 100 ± 120
protein ± ligand complexes, which deviate sufficiently in the
types of intermolecular interactions, is used for analysis.
Murray et al.[511] improved the predictive power of the
scoring function obtained by Eldridge et al.[509] with respect
to a selected protein including additional information
through Bayesian statistics.

� In their ™VALIDATE∫ approach, Head et al.[512] use electro-
static and steric interaction energies from AMBER,[513] an
HlogP-based[514] octanol ±water partition coefficient, polar
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and nonpolar contact surfaces, and a term to describe
intramolecular flexibility. The coefficients for the various
contributions were derived based on 55 protein ± ligand
complexes by means of a partial least-squares[414] or a
neuronal-net analysis. Both strategies result in regression
equations that can hardly be interpreted in physical terms.
Their relevance, in particular with respect to ligand
optimization, is thus rather limited.

� In studies of Takamatsu and Itai[515] (29 avidine ligand
complexes in the training set), Venkatarangan and Hop-
finger[516] (23 glycogen phosphorylase ± inhibitor com-
plexes in the training set), and Viswanadham et al.[517]

(11 HIV-1 protease ± inhibitor complexes in the training
set), AMBER interaction energies between protein and
ligand[513] were combined with additional terms to describe
hydrophobic interactions and other entropic contributions.
The individual coefficients were again determined by
multiple linear regression.

� Rognan et al.,[518] Bohacek and McMartin,[519] and Kasper
et al.[520] also developed empirical scoring functions tai-
lored towards one particular protein. In the first case,
training sets of five crystallographically determined HLA-
A*0201 peptide ± inhibitor complexes and 37 modeled
H-2Kk peptide ± inhibitor complexes were used to repar-
ameterize the scoring function of Eldridge et al.[509] Boha-
cek and McMartin used only nine characterized thermo-
lysin ± inhibitor complexes for calibration and considered
only the number of hydrogen bonds or hydrophobic
contacts in their scoring function. Kasper et al. used an
approach similar to Equation (11) scaling, however, the
different contributions relative to a training set of 11 pep-
tide ± chaperone DnaK complexes.

� In contrast to the functions described above, Jain devel-
oped a function[521] that is continuously differentiable.
Terms to describe hydrophobic and polar complementarity
of receptor and ligand are modeled combining a Gaussian
and a sigmoidal function. Only ligand-dependent contri-
butions are used for handling entropic considerations. The
analysis is based on 34 protein ± ligand complexes in the
training set.

3.2.4. Knowledge-Based Approaches

Knowledge-based approaches are based on the idea that a
sufficiently large data sample can serve to derive rules and
general principles inherently stored in this knowledge
base.[522] Accordingly, the development of a knowledge-based
scoring function at an atomic level is based upon observed
frequency distributions of typical interactions in experimen-
tally determined structures: in any system, only those
interactions that are close to the frequency maxima of the
interactions in the knowledge base are considered to be
favorable. This approach has been successfully applied in the
field of protein-fold prediction.[523±525] Using the concept of the
™inverse Boltzmann law∫,[526] the frequency distributions of
interatomic interactions, derived from protein crystal struc-
tures, are converted into ™potentials of mean force∫ or
™knowledge-based potentials∫. Although the thermodynamic
foundation of this procedure[365, 527±529] and the terminology

used[530] have been debated, the results obtained by these
approaches are superior to those obtained by molecular-
mechanics force fields.[531±534]

Recently, the following approaches have been published on
protein ± ligand systems:
� Verkhivker et al.[535] derived distance-dependent knowl-

edge-based pair potentials for a data set of 30 HIV-1, HIV-2,
and SIV protease ± inhibitor complexes. These potentials
were combined with desolvation terms for ligand and
protein using atom-based parameters.[536] To estimate
contributions arising from the conformational immobiliza-
tion of protein side chains, a method introduced by Pickett
and Sternberg has been adapted.[346] Differences in binding
affinities of several HIV-1 protease ± inhibitor complexes
can be reproduced by this concept.

� Surface patches of pairs of interacting atoms buried upon
complex formation are computed by Wallqvist et al.[537] in
terms of frequency distributions from a set of 38 protein ±
ligand crystal structures. Atom-based statistical preferen-
ces are produced by normalizing with the product of buried
surfaces of the corresponding individual atoms. Using two
parameters calibrated by experimental binding affinities of
the training-set molecules, binding affinities of ten addi-
tional HIV protease ± inhibitor complexes were predicted
with a standard deviation of 6.3 kJmol�1.

� DeWitte and Shakhnovich[538] used 17 or 109 crystal
structures, respectively, from the protein data bank
(PDB)[2] to develop ™interatomic-interaction free ener-
gies∫ (SMoG-Score) for ligands that bind to the surface of a
protein or into binding pockets. Using a Metropolis ±
Monte Carlo-based[450] construction procedure, ligands
are generated and energetically ranked in the binding
pocket. The method has been applied to complexes of
purine nucleoside phosphorylase, the SH3 domain, and
HIV-1 protease.

� Muegge and Martin[539] produced ™Helmholtz free inter-
action energies∫ (™PMF∫ score; potential of mean force)
from 697 crystallographically determined protein ± ligand
complexes by using 16 protein and 34 ligand atom types,
respectively. Implicit contributions of water are considered
using a specific volume correction term[540] and sampling
atom distances up to 12 ä to produce the pair-distribution
functions. For a test set of 77 protein ± ligand complexes
studied crystallographically, a deviation of 1.8 log units in
reproducing the experimentally determined binding con-
stants is found.

� Mitchell et al.[541] published pair potentials (BLEEP)
derived from 820 protein ± ligand atom-pair distributions
based on the ™inverse Boltzmann approach∫. The analysis
included hydrogens initially positioned by the program
HBPlus.[222] As reference state, a semi-empirical Ne ±Ne
pair potential, suggested by Ng et al.[542] , has been used. In
addition, the consideration of water molecules as part of
the protein has been tested. For 90 diverse protein ± ligand
complexes a correlation coefficient of 0.74 (a standard
deviation is not reported) is achieved for experimentally
determined affinities.[543]

� The scoring function DrugScore, developed by us,[544] (see
Section 5) is composed of distance-dependent pair poten-
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tials and solvent-accessible-surface-dependent singlet po-
tentials. They are computed using distribution functions
retrieved from 1376 protein ± ligand complexes as stored in
the ReliBase data base.[545] For 55 well-distributed pro-
tein ± ligand complexes determined by crystal-structure
analysis, a deviation of 1.8 log units from experimentally
determined inhibition constants has been found.[546]

3.2.5. Consensus Scoring and Filter Functions

Although not satisfactory from a scientific point of view, a
pragmatic strategy to enhance the reliability of predicted
binding affinities results from the simultaneous consideration
of several scoring functions. Charifson et al.[547] used a logical
AND operation to combine the scoring of ChemScore,[509] the
AMBER-based[513] function in DOCK,[548] and the ™piecewise
linear potential∫ function[549] . In a virtual screening assay
using three different target enzymes, this consensus scoring
function allowed the retrieval of known active inhibitors from
a set of randomly selected molecules with a significantly
improved reliability. So and Karplus averaged the predictions
of up to five different QSAR methods and showed that the
combined predictions were superior to the results obtained
from the individual evaluations.[550] Using seven different
target proteins for virtual screening, Stahl and Rarey[551]

considered a combination of terms from PLP score[549] and
SCORE1.[507] They implemented this function into the dock-
ing program FlexX[552] to achieve overall more robust enrich-
ment rates. Interestingly enough, in several cases the com-
bined function does not achieve the same (high) enrichment
rates as obtained with the original functions. Terp et al.[553]

even proceeded a step further by correlating the scores of eight
functions by using a PLS analysis with experimentally deter-
mined binding affinities for a heterogeneous data set of 120
crystallographically determined protein ± ligand complexes.
Compared to the Consensus Scoring suggested by Charifson
et al., the latter approach provides quantitative predictions of
binding properties. Applying this model to predict affinities of
120 docked MMP inhibitors revealed deviations of less than
one log unit for pKi values in 49% of the cases.

Because of the way in which they are derived (see
Section 3.2.3) regression-based methods evaluate predomi-
nantly those favorable interactions most frequently exhibited
in crystal structures of protein ± ligand complexes. However,
to recognize and disfavor those protein ± ligand geometries
occasionally produced by computational docking but which
are not in agreement with the experimental evidence, Stahl
and Bˆhm suggested the usage of ™filter functions∫.[220] These
functions cope, for example, with situations in which polar
atoms are buried upon binding but do not form appropriate
hydrogen bonds, or where hydrophobic cavities in the
protein ± ligand binding epitope are generated.

3.2.6. Approaches to the Location of Interactions in Space

Assuming a successful partitioning of binding affinity into
individual (additive) contributions (see Section 2.2.4), meth-
ods for locating favorable interaction sites can play an

important role in the optimization of ligands in the binding
pocket.
� The archetypical method in this area is Goodford×s GRID

program.[418, 554] It is based on a tailored force field. Regions
in the binding pocket are contoured in terms of the
interaction energies that various probes experience at the
intersections of a regularly spaced grid. Such probes could
be, for example, water, amino or carboxy groups, or
hydrophobic groups (DRY).

� Similar concepts, but based on crystal data are used in the
X-SITE[555] and SuperStar[556, 557] methods. The X-SITE
method uses spatial contact distributions derived from 163
triatomic fragments to highlight favorable interaction sites
in a binding pocket. The distributions were retrieved from
83 high-resolution protein structures (without ligands).
SuperStar uses spatial information stored in IsoStar.[250]

This latter database comprises nonbonded interactions
compiled from crystal data of small molecules in the CSD.[1]

These data are subsequently used to calculate probability
densities for contacts with atoms of functional groups (such
as ammonium nitrogen atoms, carbonyl oxygen atoms,
methyl carbon atoms, . . .) at the intersections of a grid
embedded into the protein binding pocket.

� Similarly, the knowledge-based pair potentials implement-
ed into DrugScore can be used to identify hot spots of
binding[544] (see Section 5) using appropriate probe atoms
(such as aliphatic carbon, carboxylate, carbonyl, hydroxy-
oxygen, amino nitrogen...).[546]

� In contrast, the MCSS (Multiple-Copy Simultaneous-
Search) approach[558] based on the CHARMM force
field[559] distributes probe molecules such as acetamide,
methanol, acetate, or propane at favorable positions in the
binding pocket. The method has been extended to study
flexible regions in the binding pocket.[560]

� The PROFEC (Pictorial Representation of Free-Energy
Changes) approach of Radmer and Kollman[561] and
enhancements of Pearlman[562] (OWFEG, One-Window
Free-Energy Grid) are based on FEP calculations. TwoMD
trajectories are used to determine free-enthalpy changes
resulting from the placement of an atom or group at
different locations around an inhibitor, both in solution and
at the protein binding site.

3.2.7. Comparison of the Various Approaches

A comparison of the developed methods with respect to
quality and speed is difficult. First of all, there is not yet a
generally accepted data set for establishing and testing a new
method. The hardware requirements and the necessary data
input preparation for the different approaches are difficult to
compare. Moreover, frequently enough the authors have
studied a limited set of examples with respect to the scope of
the biological systems considered. Accordingly, a reliable
assessment of the different methods is difficult. Despite these
limitations, the published methods for affinity prediction
summarized in Sections 3.2.1 ± 3.2.4 are compared in Table 2
from a methodological point of view. In addition, relation-
ships to other studies or methods are listed.
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Table 2. Comparison of the methods for the prediction of binding affinity of receptor ± ligand complexes with knowledge of the 3D receptor geometry discussed in Sections 3.2.1 ± 3.2.4.

First author
(method name)

Refer-
ence

Cross
references[a]

Method[b] Number of test
systems[c]

SD[d] Time Comments

Wong [460] ± FEP-MD 2 2.2 ± replacement of benzamidine by p-fluorobenzamidine and mutation
of Gly216Ala in trypsin

Reddy [564] ± FEP-MD 2 3.6 ± replacement of a formyl group with a proparagyl group
Bash [225] [461] FEP-MD 2 0.5 ± replacement of a NH group with an O atom
McCarrick [457] ± FEP-MD 3 8.4 ± substitution of phenyl rings
Ota [463] [462] NBTI 2 1.7 ± improved sampling of the configurational space; replacement of benzamidine

with benzylamine
Gerber [464] ± derivations of the free energy 2 36 ± acceleration by 1000�1 no significant correlation between experimental and calculated affinities
Oostenbrink [465] [466] single-step FEP-MD 5 3.3[e] acceleration by 5�1 substitution of hydroxy and methyl groups in four of the five ligands.
Guo [467] [468] �-dynamic approach 4 2.1 ± replacement of benzamidine with p-aminobenzamidine, p-methylbenzamidine,

p-chlorobenzamidine
äquist [469] [471 ± 473] LIE 18 3.9 ± SD value of Model 6 in Table 2 from reference [470]
Rizzo [475] [474] LIE/LR 2 20 3.9 ± different regression equations each according to composition of the data sets
Grootenhuis [476] [477, 479] CHARMM energy 35 8.3 2 ± 5 min per compound SD value from Protocol 8, Table 3
Holloway [478] ± MM2X energy 15 5.7 ± SD for test set from Table 2
Vajda [482] [486] ME based 9� 3� 5� 9 5.4 ± SD for test set from Table 1
Wenig [483] [482] ME based 9� 10� 8 	 4.2 ± investigation of protein ± protein complexes
Williams [484] [240, 241] ME based 1 	 11.4 ± SD estimated from errors of individual contributions
Krystek [485] ± ME based 9 16.7 ± SD estimated from errors of individual contributions
Checa [481] ± AMBER energy�PBE 7 3.3 ± AMBER energy alone correlated equally significantly
Froloff [489] ± PBE�ASP 3� 5 � 42 ± SD for test set from Table 2 in ref. [489]; systematic error
Zhang [490] ± PBE�ASP 9 7 2.1 ± 9 mutants of isocitrate dehydrogenase as protein components
Kuhn [502] [440, 497] PBE�ASP 1 16.7 ± SD for the biotin/avidin complex
Hoffmann [491] [565] CHARMM�PBE�ASP 10 ± ™several h for 100 compounds∫ improvement in the placing of docked geometries as target
Polticelli [492] ± PBE�ASP 4 56.4 ± SD for test sets from Tables 1 and 2; systematic error
Shoichet [493] [548, 566] Born equation�ASP 5 20.9 ± SD for test set in Table III; systematic error
Zou [494] [566] GB/SA 6 6.3 10 s per compound SD for parameter set 1 in Tables 2 and 3
Bˆhm (SCORE1) [507] [565, 567] regression based 45 9.3 ™several compounds per second∫ cross validated SD for function 2
Bˆhm (SCORE2) [508] [565, 567] regression based 82� 12 8.8 ™several compounds per second∫ SD for test set from Table 3
Eldridge (ChemScore) [509] [511] regression based 82� 20� 10 8.7 ± cross-validated SD for total training set from Table 8
Wang (SCORE) [510] [568] regression based 170 6.3 ± cross-validated SD for total training set from Table 6
Head (VALIDATE) [512] ± regression based 51� 14� 13� 11 6.3 ± cross-validated SD for total training set from Table 2
Takamatsu [515] ± regression based 29 ± ± calibration solely on avidin complexes
Hopfinger [516] ± regression based 15 ± ± calibration solely on glycogen phosphorylase complexes
Viswanadhan [517] ± regression based 11 2.4 ± calibration solely on HIV-1 protease complexes
Rognan [518] [509] regression based 5� 37 3.1 or 5.1 ± calibration on HLA±A*0201 and H-2 ±Kk complexes; SD given in each case.
Bohacek [519] ± regression based 9 2.3 ± calibration solely on thermolysin inhibitors
Kasper [520] ± regression based 11 1.7 ± calibration solely on DnaK±Heptapeptide complexes
Jain [521] ± regression based 34 5.7 ± cross-validated SD for function ™F∫
Verkhivker [535] ± knowledge based 7 ± ± derivation and test of the function solely on HIV and SIV proteases
Wallqvist [537] [569] knowledge based 8 6.3 ± SD for calibration set in Table 3
DeWitte (SMoG-Score) [538] ± knowledge based 17� 8� 11 ± ± no SD value given
Muegge (PMF-Score) [539] [570, 571] knowledge based 77 10.3 ± SD for test set 6 in Table 4
Mitchell (BLEEP) [541] [543, 572] knowledge based 90 ± ± no SD value given
Gohlke (DrugScore) [544] [546] knowledge based 71 9.2 0.2 s per compound SD for test set ™Bˆhm1998∫ in Table 2

[a] Listed are references to related work or applications of the method in other programs. [b] For detailed explanations of the methods listed see text. FEP±MD� free-energy perturbation/molecular dynamics, NBTI� non-
Boltzmann thermodynamic integration, LIE� linear interaction energy, ME�master equation, PBE�Poisson ±Boltzmann equation, ASP� atomic solvation parameter, GB/SA� generalized Born approach, LR� linear
regression. [c] The number of protein ± ligand complexes used for validation in the individual test sets are reported. [d] The standard deviation between calculated and experimental binding affinities are reported (in kJmol�1 ; a
temperature of 298 K was assumed for conversion of binding affinities given in logarithmic units). [e] Given is the mean deviation for relative free binding energies.
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Currently, only a few comparative studies on the evaluation
of affinity prediction methods are available. In all published
comparisons[547, 551, 563] enrichment rates achieved in virtual
screening are used to assess the quality of the predictions but
not the accuracy of the achieved affinity predictions. These
studies conclude that, currently, no general-purpose function
is available. Depending on the type of target protein and the
predominating protein ± ligand interactions, the best-suited
method has to be selected based on some preliminary tests.

4. Experimental Approaches to Describing Binding
Affinity

4.1. Indirect Methods

Binding affinities are usually determined in a binding assay.
In the case of enzyme reactions, the influence on enzyme
kinetics is followed by means of a readily detectable physical
property (e.g. absorption, fluorescence, or fluorescence polar-
ization of one of the reaction partners). The inhibition or
binding constant of a ligand is subsequently derived indirectly,
by considering the changes in concentration or changes in
enzyme kinetics, respectively. For receptor binding studies,
inhibitor binding is recorded by the replacement of the ligand
with potent, suitably labeled compounds. In all cases, an
indirect determination of the binding constant and, accord-
ingly, the free binding enthalpy �G� is performed. The
partitioning of standard enthalpy �H� and standard entropy
�S� to�G� [Eq. (2)] can be determined using van×t Hoff plots
of affinity measurements at different temperatures.[573]

In recent years, a large variety of physicochemical methods
has been established for the quantitative determination of
protein ± ligand binding; they are currently being developed
further. In this review, only a few such methods will be
discussed exemplarily. Plasmon resonance spectroscopy can
detect binding of a ligand to a protein immobilized on a solid
support or, vice versa, of a protein to a ligand attached to the
support by an appropriate anchor group.[574±576] In particular,
the ™on∫ and ™off∫ rates of binding can be studied using this
method. A number of NMR spectroscopic pulse sequences
have been developed to detect binding through signal shifts or
by recording the transfer of magnetization between protein
and ligand.[577±582] Mass spectrometry allows conclusions about
the stability and binding affinity of protein ± ligand complexes
by determining complex dissociation as a function of the
measurement parameters (e.g. acceleration voltage).[583] Un-
der such conditions, the binding parameters are recorded by
excluding the solvent environment. This provides valuable
complementary information to the other methods.[584] Fur-
thermore, atomic-force microscopy has been used to deter-
mine the strength of protein ± ligand interactions by a
controlled rupture of the studied complexes.[585]

4.2. Direct Measurement of Thermodynamic Parameters

Direct access to binding affinities is accomplished through
microcalorimetric measurements.[373] Because of its impor-

tance for the understanding of the thermodynamics of ligand
binding, this method will be discussed in more detail. In
isothermal titration calorimetry (ITC), a ligand is added in a
stepwise fashion at constant temperature to a buffered
solution of the receptor. The overall heat of reaction
generated upon complex formation is recorded.[586] The
association constant KA (and, accordingly, �G�), together
with the stoichiometry of the ligand ± receptor binding process
are also available. In addition, the binding constant can be
computed from the shape of the titration curve. The enthalpic
portion of the binding process can be derived from the
integrated heat of reaction, the entropic contribution T�S�
can be calculated from the difference between �H� and �G�.
Reliable shape analysis of the titration curve requires binding
constants of �109��1. To measure compounds of higher
affinity, the detection range can be extended by the displac-
ment of a lower affinity ligand.[587±589] Alternatively, for larger
affinities the binding constants can also be taken from other
experiments (e.g. enzyme kinetics).

The heat of reaction measured in an ITC experiment
comprises all intermediate and transient reactions that are
superimposed on the binding process. Measuring under
different buffer conditions elucidates whether a proton trans-
fer step is involved in the binding process.[586, 590±592] The
functional groups of the protein or ligand can experience
changes in protonation state upon complex formation. As a
result, the transfer of a ligand from aqueous solution to the
protein environment can strongly affect the dielectric proper-
ties of the local environment of these groups, resulting in a
significant shift of pKa (pKb) values (Figure 3). The measured
total enthalpy �Htotal is thus composed of the reaction
enthalpy �Hbind and the enthalpy attributed to the proton
exchange reaction with the buffer medium �Hion . As different
buffers exhibit different ionization enthalpies,[593] this process
can be readily detected by measuring under several buffer
conditions [Eq. (12)][586]

�Htotal � �Hbind� n�Hion (12)

The stoichiometry of the protonation reaction is available
from n, with the sign of n indicating whether protonation or
deprotonation of the ligand and protein groups is occurring.

From van×t Hoff plots used to analyze affinity data meas-
ured at different temperatures, only that part of the binding
enthalpy can be extracted that refers directly to the param-
eters which determine the observed measurement signal (e.g.
absorption, fluorescence quenching). This means that only for
a direct transformation of the system from a properly defined
incipient state (ligand and protein separated) to a final state
(protein ± ligand complex) the extracted enthalpy is equiva-
lent to the value of �Hbind obtained by ITC. No intermediate
(e.g. conformational) states are allowed to occur, nor should
other steps (e.g. change in the protonation state) be super-
imposed onto the binding process.[594] In biological systems,
�G usually shows only a low temperature dependence (see
below). Thus, a reliable determination of enthalpy and
entropy is hardly possible from van×t Hoff plots.

The interpretation of ITC results gives rise to a number of
interesting aspects, especially with respect to structural details
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of receptor ± ligand binding.[197] In addition to the detection of
superimposed protonation reactions, the confirmation of a
virtually temperature-independent value of �G� as a result of
a pronounced enthalpy ± entropy compensation has to be
emphasized (see Section 2.2.4).

Further access to structural interpretations is provided by
the determination of heat-capacity changes �Cp. ITC meas-
urements carried out at different temperatures show a strong
temperature dependence of �H� and, conversely, of T�S� for
most biological systems. In such cases, analogous van×t Hoff
plots show a nonlinear behavior of �G�/T as a function of the
reciprocal temperature. In contrast to enthalpy and entropy
changes, �Cp is virtually temperature independent in the
range usually accessible to biological systems. Negative values
are found in general for protein ± ligand complexes. Accord-
ingly, the complex exhibits lower heat capacity compared to
the sum of the free components. With respect to enthalpy and
entropy, this general behavior means that, with increasing
temperature, protein ± ligand binding becomes increasingly
exothermic and simultaneously entropically less favorable.
Any interpretation in terms of enthalpy- or entropy-driven
binding must therefore be considered in the light of the
applied temperature conditions. Several models have been
discussed in the literature that correlate heat-capacity changes
with the hydrophobic surface accessible to water molecules
prior to binding but buried upon protein ± protein complex
formation or protein folding.[590, 595±600] Similar surface-de-
pendent contributions were found for the transfer of hydro-
phobic solvent molecules from the water phase into their pure
phase (see Section 2.2.2). If this empirical correlation model is
applied to the binding of small ligands to their receptors, the
values calculated for �Cp are too small.[601±603] Accordingly,
the experimentally determined heat capacity of the complex
formation is smaller than the value predicted in comparison to
the separated components, if the model used only considers
the surface contributions buried upon complex formation. To
calculate such surface contributions, the relevant structure of
the free and ligand-bound protein has to be known. In
general, crystal structures are used for this purpose. There-
fore, for the binding of a small-molecule ligand to its receptor,
the surface-dependent release of the hydration shells cannot
provide the sole contribution to the change in heat capacity.
Conformational transitions of the binding partners or differ-
ences in the excitable vibrational modes of the macromolec-
ular structures arising from complex formation have been
discussed as additional explanations.[604±606] The deviations are,
however, also observed for conformationally rigid proteins
such as trypsin[607] and obviously represent a general phenom-
enon in protein ± ligand binding. Thus, it appears likely that
they involve water which is ubiquitously present in all binding
processes. Liggins and Privalov[608] assume that the enthalpic
contributions to binding resulting from hydrogen bonds
formed in the complex are exaggerated. The enthalpy of
dehydration necessary for complex formation is also included
in this contribution. At the interface of a binding pocket and
bulk solvent, the assumption of complete dehydration is
probably an overestimate. More likely, even after protein
binding, polar ligand groups still influence the water structure
in the local proximity. This effect leads to reduced desolvation

contributions which could possibly influence the heat-capaci-
ty changes. It might explain the discrepancies in the empirical
relationships established for protein-folding experiments and
the calculated and the measured �Cp values for ligand ± pro-
tein complexes.

Further information on heat capacities and their changes
can be obtained from DSC measurements (differential
scanning calorimetry).[594] The system under investigation is
heated under virtually adiabatic conditions at a constant rate
and the temperature change in the sample is recorded.
Usually, these measurements are performed to study protein
stability with respect to denaturation. These studies give
important insights into the conformational behavior of bio-
logical systems in the investigated temperature interval.
Deviations from a constant heat absorption indicate changes
in the intramolecular packing of the proteins or structural
fluctuations and conformational rearrangements.[591, 609] The
binding of a ligand to a protein influences its stability and heat
capacity, which is expressed in pronounced changes of the
DSC thermogram[610±613] and supports the interpretation of the
interaction between the binding partners.[614±616]

5. Characterization and Evaluation of Ligand
Binding with a Knowledge-Based Scoring Function

In the following, our own knowledge-based scoring func-
tion DrugScore will be briefly described. It is used to predict
binding modes and affinities, and it can be applied to identify,
in graphical terms, regions in the protein binding pocket that
are favorable for interactions.[544, 546]

For the development of DrugScore, the structural informa-
tion of 1376 crystallographically determined protein ± ligand
complexes was retrieved from the database ReliBase. Sub-
sequently, this information was converted into statistical
preferences based on 17 atom types.[545] The requirement to
consider both specific interactions and entropy-dependent
solvent contributions prompted us to use two terms: a
distance-dependent atom± atom pair preference sampled up
to 6 ä atom± atom distances (Figure 10), and a singlet
preference dependent on the solvent-accessible surface of
protein and ligand, both in the bound or unbound state.
Definition of an appropriate reference state, to which the
atom-type-specific distribution functions relate, is crucial for

Figure 10. Examples of knowledge-based pair potentials between polar
and charged (O.co2-N.pl3 (�), O.3-O.co2 (�), O.3-O.3 (�)) ligand and
protein atoms as a function of distance. The first atom-type symbol refers to
the ligand, the second to the protein.
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the information stored in the respective preferences. In case
of the pair preferences, a state based on a compact protein ±
ligand configuration with mean nonspecific interactions was
selected. For the singlet preferences, a reference state with
complete separation of protein and ligand was used. To
evaluate a given protein ± ligand binding mode, the various
pair interactions and singlet contributions arising from all
protein and ligand atoms were summed. Enthalpic and
entropic contributions resulting from purely intramolecular
effects were not considered.

Using an approximative grid-based method to compute the
solvent-accessible surface, little computing time is required to
evaluate each protein ± ligand configuration. Because of the
restriction to non-hydrogen atoms in the derivation of the pair
preferences, no assumptions on possible protonation states
are required using DrugScore. A triangular function is used
for smoothing the pair and singlet distributions initially
obtained from the structural data (™moving-window tech-
nique∫). It should sufficiently ™soften∫ the preferences to
tolerate inherent deviations from ideal geometry caused by
limited accuracy of protein crystal-structure analyses or
limited precision of docked protein ± ligand binding modes.
As no protein- or ligand-type-specific training data set was
used for the development of the function, its general applic-
ability can be assumed.

To assess the reliability of DrugScore to identify near-native
protein ± ligand binding modes out of a number of clearly
deviating geometries, data sets of 91 and 68 complexes were
analyzed. Up to 500 protein ± ligand configurations were
produced with FlexX.[552] In 80% of the cases, the best-
ranked ligand binding modes show an rms deviation of
�2.0 ä from the crystal-structure reference (native pose).
With respect to the data set of 91 complexes, this corresponds
to an improvement of 35% compared to the ranking obtained
with the scoring function originally implemented in FlexX

(Figure 11). Similarly, convincing results were obtained con-
sidering binding modes generated with DOCK.[566, 617]

In the context of a virtual screening study on human
carbonic anhydrase II (hCAII),[618] the complex structures
of two novel inhibitors (10, 11; Scheme 4) discovered
by means of a computer simulation were determined crystal-
lographically. This allowed us to assess directly by experiment
the binding modes which had been predicted in advance using
DrugScore or the original scoring function in FlexX. As

Figure 11. Accumulated number N of best-ranked docking solutions for
91 protein ± ligand complexes as a function of the rms deviation with
respect to the crystallographic reference structure. The ranking is based on
the scoring function in FlexX (�) or DrugScore (�). For comparison, the
accumulated number of complexes considering the best generated geom-
etry, disregarding its actual rank, is plotted.(�). This distribution indicates
the limit an ideal scoring function could achieve.

Scheme 4. Inhibitors discovered as a part of a virtual screening approach
on hCAII.[618]
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Figure 12. Superposition of the crystal structures (medium gray) and best-ranked docking solutions by DrugScore (light gray) and the scoring function in
FlexX (dark gray) of two inhibitors [a): 10, b): 11]. They were discovered in virtual screening on hCAII.[618]
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Figure 12 shows, the binding geometry predicted by Drug-
Score (rmsd value relative to the crystal structure: 1.2 ä for
10 ; 1.4 ä for 11) falls significantly closer to the experimentally
observed geometry than does the solution proposed by FlexX,
which suggests a configuration with an rmsd relative to the
crystal structure of 2.2 ä for 10 and 2.7 ä for 11. A reliable
identification of near-native binding modes is not only of the
utmost importance for subsequent ligand optimization, but
also a prerequisite for the prediction of binding affinities.
Importantly enough, such arrangements have to be produced
by docking programs.

The validation of DrugScore with respect to affinity
prediction was based on six data sets compiled from crystallo-
graphically determined protein ± ligand complexes and three
data sets with binding modes generated by FlexX. In the case
of 16 serine protease ± inhibitor complexes (X-ray structures),
an r2 value of 0.86 and a standard deviation of 0.95 logarithmic
units was achieved compared to experimental affinities. For a
set of 64 thrombin and trypsin inhibitors docked into the
respective proteins, an r2 value of 0.48 and a standard
deviation of 0.71 log units was revealed. The deviations
matched the experimental error.

™Hot spots∫ of binding can be calculated by using different
probe atoms, using the distance-dependent pair preferences.
The results can be visualized in
terms of isocontour surfaces.
They intuitively highlight fa-
vorable regions in the binding
pocket suitable for a particular
ligand-atom type (Figure 13 and
frontispiece). They support li-
gand optimization and help to
establish a protein-based phar-
macophore hypothesis that can
subsequently be used to screen
for candidate molecules in
compound libraries.

The prediction of hot spots
has been validated using
159 protein ± ligand complexes.
Through the application of five
probe atoms, the atom type
observed in the crystal struc-
ture could be predicted cor-
rectly in 74% of the cases.
Requesting only an atom type
of appropriate physicochemi-
cal properties revealed correct
predictions in 85% of the
cases. Mapping the protein
binding pocket of hCAII
with GRID,[418] SuperStar,[556]

LUDI,[619] and DrugScore, car-
ried out as part of a virtual
screening study,[618] demon-
strated that all methods qual-
itatively identify the same re-
gions in space, however with
different relative weightings.

Figure 13. Hot spots in the binding pocket of HIV-1 protease (PDB code
1hvr) based on knowledge-based pair potentials in DrugScore. Values
beyond a predefined threshold are isocontoured and shown together with
the ligand XK263 from Merck for comparative purposes. Regions
favorable for aromatic carbon atoms are colored in light gray, for carbonyl
oxygen atoms in midgray, and for hydroxy groups in dark gray.

6. Factorization of Thermodynamic Contributions
to Ligand Binding Using an Example of Serine
Protease Inhibitors

Inhibitor binding to trypsin and thrombin, studied in our
group, should serve as an example for the partitioning of
affinity-determining factors.[607] A series of structurally related
benzamidine inhibitors (12a ± 12dAc, Scheme 5) and the
development compounds napsagatran (13), CRC220 (14),
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inogatran (15), and melagatran (16 ; Scheme 6) have been
investigated by crystallography and microcalorimetry.

Crystal-structure determination revealed uniform binding
modes of all ligands with a salt bridge between the ligand
amidino groups and Asp 189. Further interactions are formed
between the central amide or sulfonamide groups and the
protein carbonyl and amide NH groups of Gly 216 and 219. In
detail, however, interesting deviations are observed that allow
important conclusions with respect to thermodynamics.

Interestingly, the 2-carboxy derivative 12b and napsagatran
(13) acquires a proton upon protein binding, whereas the
piperazine derivative 12d releases a proton upon binding. The
closely related 4-carboxy derivative 12c remains deprotonat-
ed at the acid group during the binding process. The same
observation holds for CRC220 (14); also here the acid group
of the central aspartate remains deprotonated. The apparent
pKa shifts of the groups involved, which show very similar
pKa values in water, can be explained by examining binding
modes of the different ligands. For CRC220, the carboxylate
group is oriented away from the binding pocket towards the
solvent (Figure 14); accordingly, this group remains partially
solvated and the local dielectric conditions closely resemble
those in the bulk water phase. For 12b and napsagatran, the
acid groups are protonated and point towards the catalytic
serine. They obviously donate hydrogen bonds to the protein
(Figure 14). The environment has such a strong influence on
the local dielectric conditions (induced dielectric fit) that the
pKa values of the carboxy groups involved are shifted by more
than four log units. The 4-carboxy group in 12b, which does

not change its deprotonated state upon binding, packs with
parallel orientation next to the hydrophobic ring plane of the
catalytic histidine. The induced pKa shift caused by this
environment is obviously not sufficient to protonate this acid
group. The terminal amino group of 12d with a pKa value of
7.5 is partially protonated in the buffer medium of pH� 7.8,
however, it binds in the deprotonated form. The hydrophobic
protein environment reinforces a pKa shift of this basic group
towards smaller values.

The partitioning of enthalpic and entropic binding contri-
butions for the free acids and esters 12b/12bMe and 12c/
12cMe provides an instructive example. The inhibitors with
the functional groups in the 4 position differ by more than
8 kJmol�1 in �G� (12c : �35.5, 12cMe : �43.6 kJmol�1), and
the higher affinity of the ester is attributed to a stronger
enthalpic binding (�H� ; 12c : �26.8, 12cMe : �39.6 kJmol�1),
whereas the entropic contributions T�S� are comparable
(12c :�8.7, 12cMe :�4.0 kJmol�1). The enthalpically reduced
binding of the acid at 25 �C can be explained by an
unfavorable desolvation energy: the acid loses hydrogen-
bonding partners for two polar acceptors (oxygen atoms), and
is transferred from aqueous solution to the protein, whereas,
the ester must only compensate for the desolvation of one
carbonyl oxygen atom. The bridging ester oxygen atom
exhibits practically no basic properties.[620] For the analogous
pair with carboxylate and ester groups in the 2 position, a
reverse correlation is observed. Here, acid and ester groups
possess almost equal affinities (�G� ; 12b : �36.4, 12bMe :
�37.0 kJmol�1). However, the free acid is now enthalpically

favored, the enthalpy contribution of the
ester is significantly less exothermic (�H� ;
12b : �46.7, 12bMe : �16.9 kJmol�1). For
entropic reasons, the binding of the acid is
now significantly less favorable (T�S� ; 12b :
�10.6, 12bMe : �20.6 kJmol�1). Upon
binding, the protonated acid group in 12b
forms an enthalpically favored hydrogen
bond to the protein (see above). At the
same time, this part of the molecule loses
residual mobility caused by immobilization
by this additional hydrogen bond in the
binding pocket. This fact results in a less
favorable entropic contribution. The re-
duced temperature factors observed in the
crystal structure for this part of the molecule
12b further support this observation. The
piperazine 12d and the acetyl derivative
12dAc exhibit very similar binding affinities
(�G� ; 12d : �40.8, 12dAc : �42.7 kJmol�1).
After correcting for the superimposed de-
protonation step of 12d, similar contribu-
tions are observed for �H� and T�S� in
both cases (�H� ; 12d : �32.9, 12dAc :
�34.4, T�S� ; 12d : �7.9, 12dAc :
�8.2 kJmol�1). Both the free amine and
the protected acetyl compound possess one
polar atom in this group capable of forming
hydrogen bonds. As in the bound state, no
hydrogen bonds are formed to the protein in
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either case; this results in an unfavorable desolvation,
obviously with comparable thermodynamic contributions for
both groups. Additional compounds investigated in this series
confirm the discussed trends.

A comparison of the heat-capacity changes is equally
interesting. In all cases, a strongly negative �Cp is observed,
which means that �H� becomes increasingly exothermic with
rising temperature and, as �G� is essentially temperature
independent, the binding process becomes entropically less
favorable. The surface portions that are buried upon binding
were derived from the known crystal structures of the
corresponding ligand ± protein complexes. As thrombin and
trypsin are described as relatively rigid proteins, the surface
portions of the uncomplexed protein were calculated using
the structure of the protein simply by removing the bound

ligand. If the empirical correlation
derived from protein folding (see
above) is applied to estimate �Cp,
the �Cp values predicted are too
low. Obviously, smaller heat capaci-
ties are observed experimentally
for the complexes than expected
from solvation-dependent surface
contributions alone. Presumably,
the additional factors described
above must be considered for a
detailed structural interpretation of
�Cp. Surprisingly, in contrast to
trypsin, a sodium-specific depen-
dence of �Cp is found for thrombin.
An according allosteric regulation
of thrombin is known, however, this
ion-specific effect cannot yet be
explained in structural terms.

7. Summary and Outlook

The affinity of a small-molecule
ligand for a macromolecular recep-
tor usually serves as a criterion to
define the biological activity of the
respective compound. It is deter-
mined by electrostatic interactions
between the ligand and the recep-
tor, together with contributions
from solvation and desolvation,
and the spatial complementarity
of both binding partners. Addition-
al influences arise from changes in
the number of degrees of freedom
and conformational changes of li-
gand and receptor experienced
upon complex formation. Under-
standing of the determining en-
thalpic and entropic contributions
to binding is a prerequisite for
affinity predictions.

The methods of virtual screening
and rational drug design require rapid and reliable methods
for affinity prediction. In this contribution we have described
and classified known theoretical approaches with respect to
their methodological foundations. Significant differences in
computational requirements and the general scope of the
methods have been addressed. The pragmatic combination of
several scoring methods as in the so-called consensus ap-
proaches indicates that, at present, no general-purpose
method is available that adequately considers all above-
described relevant contributions to ligand-receptor binding.
However, advantages have recently been achieved for the
(rapid) prediction of binding affinity by means of newly
developed knowledge-based scoring functions.

Physicochemical techniques to quantitatively characterize
ligand ± receptor binding have been developed and further
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Figure 14. Schematic binding mode (bottom) of napsagatran (13) and CRC220 (14) to thrombin. The
crystallographically determined binding geometries (light: napsagatran, white arrow indicates the proto-
nated carboxylate group; dark: CRC220, gray arrow shows the deprotonated acid group) are superimposed.
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enhanced in recent years. In particular, direct access to
thermodynamic parameters by means of microcalorimetry
provides new insights into the thermodynamic foundations of
binding affinity. Supported by the structural characterization
of ligand ± receptor complexes, it is possible to factorize
binding affinity into individual contributions. However, the
described examples of serine-protease inhibitors demonstrate
that steps superimposed on the binding process must be
considered and adequately handled.

With the increase in structural information and binding
data about receptor ± ligand complexes, further advances in
the understanding and the description of binding affinity can
be expected. This will improve our methods for its prediction.
In particular, current approximations–such as the complete
disregard of changes in protonation state of the binding
partners upon complex formation, the consideration of
receptors as rigid entities, the neglect of allosteric effects,
and the to date inadequate handling of water molecules in
ligand binding–will be the starting points for new develop-
ments.

Abbreviation list

ASP atomic solvation parameters
CSD Cambridge Structural Databank, a database of

crystal structures of small molecules[1]

FEP ±MD free-energy-perturbation calculations/molecular
dynamics

GB/SA generalized Born approach
LIE linear interaction energy
ME master equation
NBTI non-Boltzmann thermodynamic integration
PBE Poisson ±Boltzmann equation
PDB protein database[2]

PLS partial least-squares method
QSAR quantitative structure ± activity relationships
rmsd root-mean-square deviation in the Cartesian co-

ordinates of mutually corresponding atoms in two
molecules
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