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ABSTRACT The development of a two-step ap-
proach for multiscale modeling of macromolecular
conformational changes is based on recent develop-
ments in rigidity and elastic network theory. In the
first step, static properties of the macromolecule are
determined by decomposing the molecule into rigid
clusters by using the graph-theoretical approach
FIRST and an all-atom representation of the pro-
tein. In this way, rigid clusters are not limited to
consist of residues adjacent in sequence or second-
ary structure elements as in previous studies. Fur-
thermore, flexible links between rigid clusters are
identified and can be modeled as such subsequently.
In the second step, dynamical properties of the
molecule are revealed by the rotations-translations
of blocks approach (RTB) using an elastic network
model representation of the coarse-grained protein.
In this step, only rigid body motions are allowed for
rigid clusters, whereas links between them are
treated as fully flexible. The approach was tested on
a data set of 10 proteins that showed conformational
changes on ligand binding. For efficiency, coarse-
graining the protein results in a remarkable reduc-
tion of memory requirements and computational
times by factors of 9 and 27 on average and up to 25
and 125, respectively. For accuracy, directions and
magnitudes of motions predicted by our approach
agree well with experimentally determined ones,
despite embracing in extreme cases >50% of the
protein into one rigid cluster. In fact, the results of
our method are in general comparable with when no
or a uniform coarse-graining is applied; and the
results are superior if the movement is dominated
by loop or fragment motions. This finding indicates
that explicitly distinguishing between flexible and
rigid regions is advantageous when using a simpli-
fied protein representation in the second step. Fi-
nally, motions of atoms in rigid clusters are also well
predicted by our approach, which points to the need
to consider mobile protein regions in addition to
flexible ones when modeling correlated motions.
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INTRODUCTION

Specific functions of biological systems often require
conformational transitions of macromolecules. Such
changes range from movements of single side-chains and
loop rearrangements to large-scale domain motions, as
observed in the ribosome,1 F0F1-ATPase,2 chaperonins,3 or
viruses.4 In binding events involving macromolecules,
molecular motions provide the origin of the plasticity of the
binding partners, enabling them to conformationally adapt
to each other.5,6 Thus, being able to describe and predict
conformational changes of biological macromolecules is
not only important for understanding their impact on
biological function but will also have implications for the
modeling of (macro)molecular complex formation.7

Computational approaches based on atomic models of
the biological systems have been well proven for under-
standing and modeling conformational changes. Although
applicable to small-scale transitions, current molecular
dynamics simulations are too expensive for studying large-
scale molecular motions because of the limited sampling of
conformational space during typical simulation times of
only a few tens of nanoseconds. Normal mode analysis
(NMA)8 provides an interesting alternative in this case.9

Here, instead of numerically solving Newton’s equations of
motion, an analytical solution yields collective variables
(normal modes) that describe the dynamics of the system.
Despite the harmonic approximation inherent to the
method that neglects transitions from one local minimum
to another, this approach has been successfully applied to
study protein motions.10,11 In particular, recent studies
have shown that biologically relevant motions can be
reliably described by considering only a small subset of
low-frequency normal modes (in many cases, even a single
mode is sufficient).12

Initially, in “standard NMA,” all-atom models of the
macromolecules together with conventional force fields
were applied, requiring energy minimization to reach a
stationary point on the potential energy surface prior to
the NMA step. Furthermore, NMA involves the numeric
diagonalization of a 3N-dimensional matrix (where 3N is
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the number of degrees of freedom of the system), leading to
considerable requirements in memory and computational
time even in the case of proteins with a few thousand
atoms. These limitations have recently been overcome by
modeling proteins based on reduced representations13;
that is, by considering C� atoms (from now on, referred to
as “ANM analysis”)14 or one mass-point per residue15 only,
or even more coarse-grained models16 such as protein
shapes filled with uniformly spaced lattice points17 or
other representations of shape and mass distribution.18,19

This results in a considerable decrease of the dimensional-
ity of the matrix. Instead of atomic force fields, simplified
potentials in terms of Hookean springs are then used,
which connect the above “particles” and result in an elastic
network.20 Because, by definition, all springs are in a
relaxed state in this network, no energy minimization is
required. Convincingly, good agreement between ampli-
tudes and directions of the motions predicted by these
simplified models and those based on all-atom representa-
tions or experimentally observed ones has been found.15,20

This finding suggests that it is sufficient to capture the
shape and mass distribution of a protein for a reliable
description of its large-scale displacements. In that re-
spect, discrete representations of the particle mass distri-
bution based on low-resolution data of macromolecules
(e.g., electron densities) have been applied to describe
protein motions.18,19

An alternative way of coarse-graining is provided by
considering proteins to be constructed by (quasi-)rigid
bodies that are connected by flexible parts. The rotations-
translations of blocks approach (RTB) proposed by Sanej-
ouand et al.21,22 is a method along these lines, for which a
more efficient implementation has been reported re-
cently.23 Here, the 3N-dimensional matrix of the entire
system is projected into a 6n-dimensional subspace spanned
by the translational and rotational basis vectors of n blocks
of amino acids, resulting in a reduction of the dimensional-
ity of the matrix to be diagonalized and, hence, of the
computational expense.22–25 The approach is based on the
hypothesis that low-frequency normal modes of proteins
can be described as pure rigid body motions of the blocks. A
comparison of RTB results with those obtained by stan-
dard NMA strongly supports this hypothesis22,23,26, indi-
cating that RTB is a promising approach for normal mode
analysis of large systems.

So far, blocks were constructed by including up to six
residues consecutive in sequence into one block,22,23 by
dissecting a protein into clusters of uniform size24 or by
considering whole protein subunits of a virus capsid as
rigid.26 These routes are somewhat counterintuitive for
the model that forms the basis of the RTB method, because
rigid parts of the protein are not distinguished from
flexible regions. An ad hoc approach to overcome this
limitation is to place each secondary structure element in
its own block, with each residue lying outside the second-
ary structures being placed in one block.22 In this case,
however, a significant drop in the agreement between
experimentally determined and computed directions of
conformational change was found compared with, for

example, using a one-residue-per-block partitioning. This
finding suggests that considering all secondary structure
elements as rigid blocks per se may not be appropriate.
Moreover, using blocks of the same length as found when
partitioning the protein according to the secondary struc-
ture elements, but randomly distributed along the protein
chain, resulted in the same agreement.22 This finding
again questions the validity of partitioning the protein
solely based on secondary structure information. In particu-
lar, the influence of nonlocal (tertiary) interactions on
determining the flexibility/rigidity of a protein region is
completely neglected.

It is of interest that flexibility concepts well grounded in
mathematics,27 engineering,28 and solid-state physics29

allow us to accurately and efficiently locate rigid and
flexible regions within a macromolecule from a single,
static structure. Based on the Molecular Framework Con-
jecture30 (which extends Laman’s theorem31 to the subset
of all 3D networks with molecule-like properties), the
stability of a network of joints (e.g., atoms) connected by
struts (e.g., bonds) is related to the average number of
struts at the joints (e.g., the mean coordination, or number
of bonds, for atoms in the network). When modeling
covalent bonds and strong hydrogen-bonds and hydropho-
bic interactions appropriately as distance constraints be-
tween atoms, proteins can be considered as molecular
frameworks.30,32,33 A fast combinational algorithm, the
pebble game, has been developed for counting bond-
rotational degrees of freedom in 2D and 3D bond net-
works,29,34,35 which can be related to regions of flexibility
and rigidity. Applied to very large bond networks in
amorphous materials, the algorithm on average scales
linearly with network size.34 The FIRST (Floppy Inclusion
and Rigid Substructure Topology) software36 is an imple-
mentation of the pebble game along with code that deduces
and represents the protein covalent and noncovalent net-
work. FIRST analyses have been used to accurately iden-
tify rigid regions as well as collectively and independently
moving regions in a series of proteins,32,36 relate the
unfolding of a protein to its loss in structural stability,33

identify protein folding cores and pathways,37 provide the
starting point for simulating the motions of flexible protein
regions,38–40 and determine the change in protein flexibil-
ity on complex formation.41

In the current work, we present a new approach that
combines concepts from rigidity theory and elastic net-
work theory described above to predict conformational
changes from coarse-grained protein models. First, the
protein is decomposed into rigid clusters by using FIRST
analysis. In this way, the definition of blocks in an ad hoc
manner is circumvented. Subsequently, an RTB analysis
is carried out for the elastic network model of the protein,
in which each rigid cluster is modeled as a block. Although
the first step only provides information about which
regions of the protein are flexible or rigid (“statics”),
information about amplitudes and directions of motions
(“dynamics”) is obtained from the second step. These
results as well as those from ANM analysis and standard
NMA using a conventional force-field representation of the
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protein are compared with experimentally observed confor-
mational changes for a set of 10 proteins. It is encouraging
that, in general, comparable results are found by our
approach than if no or a uniform coarse-graining is ap-
plied, whereas our method becomes superior if the move-
ment is dominated by loop or fragment motions.

METHODS
General Strategy

The rigid cluster NMA (RCNMA) presented in this study
consists of two steps. Using an all-atom representation, a
rigid cluster decomposition of the protein is obtained by
FIRST analysis in the first step. In the second step, an
RTB analysis is performed on the basis of the coarse-
grained representation of the protein by FIRST consisting
of rigid clusters connected by flexible links. This step
yields information about amplitudes and directions of
motions. Moreover, a reduced C� atom representation of
the protein in an elastic network is used in this step. In
total, macromolecular conformational changes are pre-
dicted by a multiscale approach, the single steps of which
will be detailed in the following sections.

Rigid Cluster Decomposition

Flexible and rigid regions of the proteins are identified
by FIRST. Because the algorithm and underlying math-
ematical rigidity theory have been detailed else-
where,30,32,34,36 the approach is only briefly reviewed here.
Applying the pebble game algorithm,34 FIRST identifies
and counts the bond-rotational degrees of freedom in a
molecular framework, whose vertices represent protein
atoms and whose edges represent covalent and noncova-
lent (hydrogen-bond and hydrophobic) constraints within
the protein.32,33,36 Flexibility in this network results from
dihedral rotations of bonds that are not locked in by other
bonds. Each bond is assigned by FIRST to be part of either
a rigid cluster or a flexible region. A rigid cluster forms a
collection of interlocked bonds in which no relative motion
can be achieved without a cost in energy. Phrased differ-
ently, only rigid body motions (translation and rotation)
are allowed for a rigid cluster. Hence, each rigid cluster
will form a “block” in the subsequent RTB (see below).
Note that in this way, blocks are not limited to comprise
one or a few residues or single secondary structure ele-
ments but may extend over considerable parts of the
macromolecular structure. Underconstrained regions in
the network are typically flexible links between rigid
clusters. These underconstrained regions are modeled on
one-atom-per-block basis in the RTB (in which case only
translational motion of the block is considered).

The molecular framework that represents the protein is
completely defined by bond constraints between atoms and
next-nearest neighbor constraints that define coordination
angles between bonded atoms. Biologically important mo-
tions are in many cases characterized by low-frequency,
large-amplitude structural fluctuations. By including con-
straints into the network that represent strong forces,
high-frequency motions can be effectively quenched,
thereby reducing the complexity of the energy landscape.

Here, covalent and hydrogen bonds, salt bridges, and
hydrophobic interactions are considered to be strong forces.
Bond lengths (represented as distance constraints be-
tween bonded atoms) and bond coordination angles (repre-
sented as distance constraints between next-nearest neigh-
bors of a central atom) are set to their values observed in
the input structure. The configuration of double and
partial double bonds (peptide bonds) are restricted by
additional constraints.33 The noncovalent interactions are
modeled as described in previous FIRST studies.33,37,41

For further details, see Gohlke et al.41

Rigid Cluster Normal Mode Analysis

Standard NMA requires the diagonalization of a 3N-
dimensional Hessian matrix H to obtain the normal modes
of the system, where N is either the number of atoms if an
atomic force-field-based representation of the molecule is
used or the number of all “particles” (e.g., C� atoms) if the
molecule is represented as an elastic network (see be-
low).14,42 Using a coarse-grained representation of the
molecule in terms of n rigid clusters (blocks) as obtained by
FIRST analysis, the dimensionality of H can be reduced to
6n by following the RTB approach of Sanejouand and
coworkers.21,22 This leads to a reduction of memory require-
ments by a factor proportional to (N/n)2 and a decrease in
the number of operations required for the diagonalization
by a factor proportional to (N/n)3. In this approach, only
translational and rotational degrees of freedom of the
blocks are considered (for single atoms, only translations
are considered), whereas no relative motions of elements
within a block are allowed. Therefore, H is projected into
the subspace spanned by translation/rotation basis vectors
of the blocks. Diagonalizing the resulting matrix Hsub

yields approximate low-frequency modes Usub and eigenval-
ues �. Finally, atomic displacements can be obtained by
expanding back the eigenvectors Usub to the Cartesian
space. Further details of the calculations are given in the
Appendix.

Elastic Network Model

Based on a simplified representation of the potential
energy,14,15,20 the proteins are described as 3D elastic
networks for the rigid cluster normal mode analysis. In
this study, each amino acid is reduced to a single “particle”
(the C� atom), which acts as a junction in the network.
Although an all-atom representation was required to
appropriately model the network of constraints used as
input for the FIRST analysis, reduced representations
have been successfully applied in normal mode calcula-
tions to study macromolecular dynamics and conforma-
tional changes.18,19,42 Interactions between these particles
are modeled by Hookean springs based on a harmonic
pairwise potential,20 resulting in a total potential energy
of the system given by

V �
�

2�
i

�
j

��rc � rij
0 ��rij � rij

0 �2, (1)

where rc � 10Å is the cutoff up to which interactions
between the C� atoms are taken into account. Varying the
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cutoff value in the range of 9–14 Å overall yielded qualita-
tively similar results in our case. rij and rij

0 are the
instantaneous and equilibrium distances between atoms i
and j, respectively. �(x) is the Heaviside step function that
accounts for the cutoff effect of the interaction; it is 1 if x �
0 and 0 otherwise. � is a phenomenological force constant
assumed to be the same for all pairwise interactions; it is
set to 1 kcal mol	1 Å	2.

According to the elastic network model,42 the elements
of matrix H are then obtained from the second derivatives
of V with respect to the Cartesian coordinates of atoms i
and j. In all cases, the H matrix is constructed by using C�

atom coordinates derived from the crystallographically
determined protein structures.

Protein Data Set

The multiscale modeling approach presented here was
tested on a set of 10 proteins (Table I), for which conforma-
tional changes between at least two unbound and bound
structures have been experimentally observed. The un-
bound protein structure will be referred to as “open” in the
following and the ligand-bound protein structure as
“closed.” The conformational changes represent predomi-
nantly hinge or predominantly shear motions, as classified
in the Database of Macromolecular Movements.43 Part of
this data set was also used in the study of Tama and
Sanejouand.44 In all cases, all non-protein atoms were
stripped from the Protein Data Base (PDB45) files. Be-
cause an all-atom representation was required for FIRST
analysis, hydrogens were then added by using the proton-
ate program of Amber.46 In histidine side-chains, the
molecular environment was visually inspected to decide
which ring nitrogens to protonate. Using a default assign-
ment of the hydrogen to the Nε of histidines instead47 did
not yield qualitatively different results (data not shown).
All other ionizable side-chains were modeled according to
their standard protonation states at neutral pH. No fur-
ther optimization of the hydrogen bond network was
performed, owing to recent findings that the outcome of
FIRST is robust even if the number of hydrogen bonds
considered in the molecular framework varies by 5–10%.41

Comparison With Experiment

Results of the normal mode analyses are compared with
the experimentally observed conformational changes in
the direction of the motions and their magnitude. First,
the overlap Ii between normal mode u� i and the conforma-
tional change 
r� � r�o 	 r�c is calculated according to48

Ii �
�u� i � 
r� �

�u� i � u� i�
1/2�
r� � 
r� �1/2, (2)

where r�o and r�c are vectors of the atomic coordinates of the
open and closed structures of the protein, respectively. For
this, the closed structure was superimposed onto the open
structure on the basis of C� atom positions. An overlap of
one indicates that the directions of both kinds of collective
C� displacements are identical.

To measure the similarity in the relative magnitude of
the atomic displacements determined experimentally or
by normal mode analysis, the correlation coefficient44 is
calculated.

Ci �
A� i � 
R�

�A� i � A� i�
1/2�
R� � 
R� �1/2 (3)

A� i and 
R� are the vectors of mean centered amplitudes of
atomic displacements as determined by mode i or experi-
ment, respectively. A correlation coefficient of one indi-
cates that the relative magnitudes of atomic displace-
ments are identical in both cases.

Finally, a collectivity index as proposed by Brus-
chweiler49 is calculated according to

� �
1
N exp� � �

i�1

N


r�i
2 log
r�i

2�, (4)

where 
r�i is the difference in Cartesian coordinates of
atom i due to the experimentally determined conforma-
tional change between open and closed forms of the
proteins. All 
r�i have been scaled consistently so that�i�1

N 
r�i
2 � 1. The index describes the degree of collectivity

of a conformational change in that it reflects the number of
atoms that are affected during the conformational transi-
tion. � � 1 indicates a conformational change of maximal
collectivity (i.e., all 
r�i are identical). Conversely, if only
one atom is affected by the conformational change, �
reaches the minimal value of 1/N.

Standard Normal Mode Analysis and Spanning
Coefficient

For comparison with the RCNMA results, standard
NMA is performed on a subset of six proteins (Table I), by
using the Amber 8 suite of programs46 and the Cornell et
al. force field50 for the atomic description of the proteins.
Before NMA, protein structures are minimized in the gas
phase by using the conjugate-gradient method with a
distance-dependent dielectric of 4r (to approximately ac-
count for solvation effects, with r being the distance
between two atoms) until the root-mean square of the
elements of the gradient vector is �10	4 kcal mol	1 Å	1.
The root-mean-square deviation (RMSD) of the backbone

TABLE I. Protein Data Set Used in This Study

Protein
Open

structurea
Closed

structurea
Type of
motionb

Adenylate kinase 4ake 1ake H
Alcohol dehydrogenase 8adh 6adh S
Aspartate aminotransferase 9aat 1ama S
Calmodulin 1cfd 1cfc H
Citrate synthase 5csc 6csc S
CD kinase 1hck 1hlr Hc)

HIV-1 protease 1hhp 1ajx Hc)

LAO binding protein 2lao 1lst H
Thymidylate synthase 3tms 2tsc S
Tyrosine phosphatase 1ypt 1yts Hc)

aPDB code of crystallographically determined structure.
bH � hinge bending; S � shear motion, as classified in the Molecular
Movements Database.43

cLoop or fragment motions dominate the overall movements.
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atom positions between the starting and minimized struc-
tures amounts to 1.8 Å, averaged over all six cases.
Frequencies and normal modes are then computed for
these minimized structures.

Standard normal modes are used to evaluate the quality
of eigenvectors obtained by our approach. For this, a
“spanning coefficient”23 is computed as the sum of the
square of expansion coefficients cij � u� i � v� j

Pj � �cij
2 , (5)

where the summation runs over all RCNMA eigenvectors
u� i, and v� j is the j-th standard normal mode. A spanning
coefficient of 1 indicates that v� j can be perfectly described
in the subspace considered in the RCNMA approach.

RESULTS AND DISCUSSION
Rigid Cluster Decomposition by FIRST Analysis

In the first step of our approach, the protein is decom-
posed into rigid clusters, which provides the input for the
subsequent RCNMA. In previous studies, decomposition
schemes were used, which resulted in blocks consisting of
residues consecutive in sequence,22,23 secondary structure
elements,22 clusters of uniform size,24 or whole protein
subunits.26 These schemes are counterintuitive with re-
spect to the model that forms the basis of the RTB
method.21 Instead, we sought for a decomposition in which
structurally rigid protein regions are distinguished from
flexible ones between them and which takes into account
that nonlocal interactions have an important influence on
protein rigidity/flexibility. The molecular framework ap-
proach FIRST provides this information about local flexibil-
ity characteristics from a single 3D structure in about 1 s
of computational time.

The conformational flexibility predicted by FIRST will
depend on whether a ligand-free (open) or ligand-bound
(closed) form will be analyzed because of the additional
constraints provided by the ligand and/or conformational
changes of the protein. Although cases of increased flexibil-
ity51–58 or flexibility transferred to other parts of the
protein59–64 have been described, in most of the instances
known to date ligand binding reduces the flexibility of the
macromolecule.36 Thus, as we anticipate that under-
predicting rigidity (i.e., underestimating the size of rigid
clusters) is less detrimental to the subsequent RCNMA
than the opposite, we only analyze the open forms of the
proteins by FIRST. Along these lines, the hydrogen-bond
energy cutoff was set to Ecut � 	1.0 kcal mol	1, which
results in on average 5% less constraints in the molecular
framework and, hence, a more floppy protein than if Ecut is
set to 	0.6 kcal mol	1 as in previous studies.36,41

Results of the rigid cluster decomposition by FIRST for
the 10 proteins are given in Table II. The number of rigid
clusters obtained is related to the number of residues of
the protein. Hence, the values indicate the fraction of
“particles” that need to be considered in the RCNMA with
respect to the number of “particles” if no coarse-graining
would have been performed. The decrease is by a factor of
2.3 in CDK and thymidylate synthase and 4.8 in tyrosine

phosphatase, with values around 3 for most of the other
cases.

Thus, performing a rigid cluster decomposition by FIRST
overall results in a coarse-graining of the proteins (and,
hence, a considerable gain in efficiency regarding the
subsequent RCNMA) that is comparable with the one used
in RTB analyses, where up to six residues were included
into one block.22 However, in the latter case, all blocks had
the same size and were constructed of residues consecutive
in sequence, irrespective of whether the parts of the
protein are rigid or flexible. In contrast, the FIRST analy-
sis provides a more realistic mixed coarse-graining such
that rigid protein regions will be modeled at low resolution
in the subsequent RCNMA, whereas flexible regions will
be modeled in atomic (i.e., high-resolution) detail. Along
these lines, Figure 1 displays the rigid cluster distribution
for the 10 proteins in terms of the cumulative summation
of relative rigid cluster sizes as a function of the number of
blocks per number of residues of a protein. The dotted
diagonal line would be obtained with a one-residue-per-
block decomposition. In contrast, the curves of the 10
proteins are characterized by a steep increase at the
beginning (indicating a decomposition into a few large
rigid clusters) but then run parallel to the diagonal
(indicating that the remaining blocks are of size one). It is
of interest that in tyrosine phosphatase or adenylate
kinase, about 80% of all residues are composed of rigid
clusters of size �1. Yet, both proteins exhibit rather
different characteristics of the decomposition (Fig. 2). In
tyrosine phosphatase [Fig. 2(a)], 64% of all residues are
part of the largest rigid cluster (Table II), which spreads
throughout the protein and comprises all secondary struc-
ture elements except helices �3 and �4. Thus, the picture
of a dominating rigid core flanked by flexible loops is
provided. In contrast, in adenylate kinase [Fig. 2(b)], the
largest rigid cluster only contains 14% of all residues
(Table II) and comprises the lid domain. All helical regions
of the protein form additional isolated rigid clusters as
does the central -sheet. Although similar results can be
expected from a decomposition based only on secondary

TABLE II. Results of the Rigid Cluster Decomposition

Protein
No. of

residues
No. of

blocksa
Size of

largest blockb

Adenylate kinase 214 0.27 32 (0.14)
Alcohol dehydrogenase 374 0.35 134 (0.36)
Aspartate aminotransferase 401 0.37 128 (0.32)
Calmodulin 148 0.35 41 (0.27)
Citrate synthase 860 0.41 198 (0.23)
CD kinase 296 0.44 53 (0.17)
HIV-1 protease 198 0.41 116 (0.58)
LAO binding protein 238 0.37 106 (0.44)
Thymidylate synthase 264 0.44 118 (0.44)
Tyrosine phosphatase 278 0.21 179 (0.64)
aNumber of rigid clusters with respect to the number of residues of the
protein as obtained by FIRST analysis using a hydrogen bond energy
cutoff Ecut � 	1.0 kcal mol	1.
bSize of the largest rigid cluster as obtained by FIRST analysis using
Ecut � 	1.0 kcal mol	1. In parentheses, the size of the largest block
with respect to the number of residues of the protein is given.
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structure information, we note that in this case, neither
the whole lid domain nor the whole -sheet would have
been considered as a rigid cluster. This finding indicates
the importance of taking into account the influence of
nonlocal interactions on protein rigidity. Finally, in all
other cases, between 60 and 70% of the protein residues
are part of rigid clusters of size �1, with relative sizes of
the largest blocks in between those found for tyrosine
phosphatase and adenylate kinase.

Comparison of RCNMA With Experimentally
Determined Conformational Changes

For the 10 proteins, RCNMA is performed by using the
rigid cluster decomposition as obtained by FIRST. Al-
though FIRST analysis only provides information about
which protein regions are flexible or rigid, information
about amplitudes and directions of motions are obtained in
this step. Only the ligand-free (open) forms of the proteins
are analyzed here, because it was found previously44 that
almost always a better description of the conformational
change is given by the mode most involved in this change if
this mode is obtained from the open form instead of the
closed one. This finding has been explained in that (simpli-
fied potential-based) NMA captures properties of the pro-

teins that for the most part are properties of the mass
distribution. The open protein forms usually show better
separated domains and, hence, more distinguishable con-
gregations of masses. In addition, ANM analysis (to which
RCNMA becomes identical if only blocks consisting of one
residue are used), RTB analysis with three sequentially
consecutive residues forming one block (denoted RTB-3
from now on), and standard NMA are performed.

The computed results are compared with experimen-
tally determined conformational changes of the proteins in
terms of the directions and magnitudes of the motions
(Fig. 3). Previous studies strongly suggest that NMA based
on elastic network model representations15,42,44 and/or
coarse-grained models16,22,23 of proteins can reliably de-
scribe biologically relevant motions by considering only a
small subset of low-frequency normal modes. It is not
clear, however, whether this still holds if up to 64% of the
protein is modeled as one rigid body (Table 2).

Direction of motions

In Table III, the mode most involved in the conforma-
tional change as judged by the overlap value (Eq. 2)48 is
given. Overall, for 7 of 10 cases, overlap values � 0.6 are
found by using RCNMA. Comparing these results with

Fig. 1. The cumulative summation of the relative rigid cluster size (i.e., the rigid cluster size for the number
of all residues) as a function of the number of rigid clusters related to the number of all residues for the proteins,
determined by FIRST analysis using Ecut � 	1.0 kcal mol	1. The dotted line indicates the curve that would
result from a decomposition on a one-residue-per-block basis.
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those obtained by ANM analysis, only in the citrate
synthase case the latter performs slightly better. In
contrast, RCNMA better describes the direction of the
conformational change in CDK, HIV-1 protease, and
tyrosine phosphatase and yields comparable results in
all other cases. RCNMA results are also compared with
RTB-3 analyses. RTB-3 uses the same level of coarse-
graining that has been found on average also by a rigid
cluster decomposition with FIRST (Table II): however,
rigid and flexible parts of the protein are not explicitly
distinguished for block formation. Again, better overlap
values are found by RTB-3 in the citrate synthase case.
However, RCNMA outperforms RTB-3 in alcohol dehy-

drogenase, CDK, HIV-1 protease, and tyrosine phospha-
tase.

By the two comparisons, the influence of a mixed
coarse-graining (RCNMA) with regard to either no (ANM)
or a uniform (RTB-3) coarse-graining is probed. As indi-
cated by the results, distinguishing between flexible and
rigid protein regions may in general be advantageous,
although we note that this finding is still based on a
limited number of test cases. It is further enlightening to
analyze the observed differences for the type of motion
found on going from the open to the closed conformation.
As such, cases that are predominantly characterized by
hinge bending or shear motions are predicted equally well
by all approaches. Thereby, better agreement between
predicted and experimentally determined directions of

Fig. 2. Rigid cluster decomposition of tyrosine phosphatase (a: PDB
code: 1ypt) and adenylate kinase (b: PDB code: 4ake). Rigid clusters are
colored in blue, cyan, black, yellow, red, and green. In the adenylate
kinase case, multiple medium-size rigid clusters are found. In contrast, in
the tyrosine phosphatase case, one rigid cluster that comprises 64% of all
protein atoms dominates the decomposition.

Fig. 3. Superimposition of open (blue) and closed (green) conforma-
tions of tyrosine phosphatase (a) and adenylate kinase (b). In addition,
the amplitudes and directions of motions as predicted by the modes most
involved in the conformational changes, respectively, are depicted as red
arrows. In both cases, the amplitudes of the motions were scaled for best
graphical representation.
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movements are found for hinge motions than for shear
motions. This may be related to the issue of mass distribu-
tion discussed above, because in the case of shear motions,
domains may be less well separated in the open form than
in the hinge-bending motions.

In turn, all three cases where RCNMA performs supe-
rior to ANM and RTB-3 (CDK, HIV-1 protease, and
tyrosine phosphatase) are predominantly characterized by
loop or fragment motions. It may not be surprising that
these types of motion are less well predicted if the flexible
loops are constructed from rigid blocks as in the RTB-3
case. It is more difficult to conceive, however, why better
results are obtained from RCNMA in those cases than if no
coarse-graining is applied. One may speculate that using a
coarse-grained protein representation in the RTB step
leads to a less rugged potential energy surface and, hence,
facilitates the modeling of these motions when using a
harmonic approximation. In any case, being able to model
these types of motions with reasonable computational
efficiency provides an interesting way of incorporating
protein flexibility into docking algorithms, particularly,
because ligand binding sites are often formed by loop
regions.

Finally, larger overlap values are found by RCNMA in
four out of six cases for which also standard NMA calcula-
tions were performed; in the remaining two cases, RCNMA
and standard NMA perform comparably.

To test how well the experimentally determined confor-
mational change can be described collectively in the sub-
space spanned by the set of eigenvectors of the RCNMA,
the spanning coefficient (Eq. 5) was determined (Table IV).
For 9 of 10 cases, values are close to or larger than 0.8,
indicating that the conformational change is well de-
scribed by the RCNMA eigenvectors.

In Table III, overlap values are also presented, which
were calculated separately for rigid protein regions (i.e.,
rigid clusters with size � 1) and flexible ones. In all but
four cases, those obtained for rigid clusters are even larger

than the values of flexible parts. This indicates that
directions of motions of atoms within rigid clusters are
well represented by a single low-frequency mode even if
these motions arise from rigid body movements of the
whole cluster. The finding can be attributed to the fact that
biologically relevant motions are typically delocalized and
do not require gross changes in the internal structure of
the rigid clusters. In contrast, in HIV-1 protease, thymidy-
late synthase, and tyrosine phosphatase, the computed
and experimentally observed directions of motions of rigid
protein regions show little or no overlap (in contrast to
flexible regions where a considerable overlap is observed).
It should be noted, however, that for these proteins, the
experimentally determined movements of rigid parts are
only of the same magnitude as the uncertainty in the
atomic positions of the experimental structures. Thus,
“noisy” atomic displacements result that cannot be repre-
sented by a mode describing collective motions.

Collectivity of motion

Except for aspartate aminotransferase, the mode most
involved in the conformational change is one of the five
with lowest frequencies, as found by RCNMA, ANM, and
RTB-3 analyses. This is in line with previous reports12

that biologically relevant motions can be reliably described
by considering one or only a small subset of low-frequency
normal modes. These motions are also typically delocal-
ized and involve mainly collective motions of residues
throughout the protein [Fig. 3(b)]. In that respect, it is
encouraging that even for motions that are rather local-
ized as indicated by values of the collectivity index (Eq. 4;
Table IV) below 0.16, overlap values close to or above 0.5
have been found by RCNMA. This suggests that, for
example, the direction of the motion of the 7-�4 loop
(residues 350–360) in tyrosine phosphatase is adequately
described by a single mode [Fig. 3(a)]. It should be noted,
however, that this only holds as long as the corresponding
motion is linear but not if a nonlinear path of atomic

TABLE III. Comparison of NMA Results With Experimentally Determined Conformational Changes in
Directions of Motions

Protein

RCNMA ANMa

overlapc
RTB-3b

overlapc
Standard NMA

overlapcOverlapc Flexible/rigidd

Adenylate kinase 0.81 (1) 0.65/0.85 0.81 (1) 0.82 (1) 0.86 (1)
Alcohol dehydrogenase 0.73 (3) 0.67/0.80 0.73 (3) 0.61 (2) -e

Aspartate aminotransferase 0.49 (6) 0.32/0.57 0.51 (6) 0.52 (7) -
Calmodulin 0.84 (2) 0.83/0.84 0.84 (2) 0.85 (2) 0.57 (4)
Citrate synthase 0.80 (3) 0.77/0.82 0.88 (3) 0.86 (3) -
CD kinase 0.39 (2) 0.46/0.31 0.26 (2) 0.28 (1) -
HIV-1 protease 0.61 (2) 0.70/0.00 0.53 (2) 0.55 (5) 0.62 (2)
LAO binding protein 0.84 (1) 0.86/0.83 0.85 (1) 0.86 (1) 0.66 (1)
Thymidylate synthase 0.48 (2) 0.52/0.13 0.46 (1) 0.44 (4) 0.25 (25)
Tyrosine phosphatase 0.60 (1) 0.67/0.20 0.38 (1) 0.37 (1) 0.44 (2)
aAnisotropic network model analysis42 (i.e., no block formation was considered).
bRotations-translations of blocks analysis22 with three sequentially consecutive residues forming one block.
cOverlap (Eq. 2) of the mode most involved in the conformational change, considering all C� atoms of the protein. In parentheses, the number of
this mode is given.
dOverlap (Eq. 2) of the mode most involved in the conformational change. For the first value, only C� atoms in flexible protein regions were
considered; for the second value, only C� atoms in rigid clusters of the protein were considered.
eBecause of the size of the systems, no standard NMA could be performed.
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motions can be expected for displacements, leading to
changes in the directions of the motions during the confor-
mational transition. Again, being able to distinguish be-
tween rigid protein regions and flexible links between
them as given by our approach clearly provides an advan-
tage over previous RTB analyses.22–24,26 This is particu-
larly true if rather localized motions are to be modeled.

Relative magnitude of motions

Finally, correlation coefficients (Eq. 3) are given in Table
IV, which measure the similarity in the magnitude of the
atomic displacements determined experimentally or given
by the mode most involved in the conformational change.
In all cases, values � 0.6 are found, suggesting that some
information about the amplitudes of atomic displacements
is provided by the mode even in those cases in which the
directions of the motions are less well described, as has
been stated previously.44 Along these lines, Figure 4 shows
displacements of C� atoms as a function of the residue
number, obtained from experimentally determined confor-
mational changes or by displacing atoms along the direc-
tion of the normal mode most involved in this change.
Adenylate kinase and tyrosine phosphatase were chosen
exemplarily here because they represent, respectively,
delocalized and localized conformational changes. Convinc-
ingly, in both cases, theoretical and experimental curves
are strikingly similar for both residues located in flexible
regions and rigid clusters. The latter indicates that magni-
tudes of atomic motions in rigid protein parts are well
described by the rigid body motions of these clusters, as
has been found also for the directions of these motions
above.

Comparison of RCNMA With Standard NMA

The RCNMA approach introduced here is an approxima-
tion to standard NMA calculations, which use an atomic
force-field representation of the macromolecule. On this
account, RCNMA results will now be compared with those
from standard NMA.

Comparing experimentally determined conformational
changes and RCNMA results in terms of the directions of
observed and calculated movements (see above) already
suggests that the atomic displacements involved in the
biologically relevant motions, in general, can be well
represented in the subspace considered in the RCNMA
approach. Similarly, the low-frequency subspace spanned
by standard NMA normal vectors is fairly described by
eigenvectors obtained from the RCNMA approach, as
indicated in Figure 5. Here, spanning coefficients (Eq. 5)
calculated for each standard normal mode with a fre-
quency � 20 cm	1 are depicted exemplarily for the three
proteins adenylate kinase, calmodulin, and thymidylate
synthase. These proteins represent different degrees of
coarse-graining, as indicated by relative numbers of blocks
after FIRST analysis of 0.27, 0.35, and 0.44 (Table II),
respectively. For most of the vectors, spanning coeffi-
cients � 0.6 are found. Only in those cases where the
largest rigid cluster contains � 50% of all protein atoms
[HIV-1 protease, tyrosine phosphatase (Table II)], stan-
dard NMA vectors can be less well represented in the
subspace spanned by RCNMA vectors. This is indicated by
spanning coefficients between 0.4 and 0.6 (data not shown).
Although similar findings have already been reported with
coarse-graining levels of up to three sequentially consecu-
tive residues,22,23 this result is particularly encouraging in
our case. It shows that low-frequency vibrational motions
can be fairly described collectively even if a considerably
more coarse-grained protein representation based on a
rigid cluster decomposition by FIRST is applied.

Figure 6 depicts approximate frequencies calculated by
RCNMA as a function of frequencies obtained by standard
NMA. In all cases, RCNMA frequencies are larger than
their corresponding frequencies from standard NMA. This
indicates that modeling the proteins as a collection of rigid
bodies connected by flexible links (and using an elastic
network representation with a phenomenological force
constant � � 1 kcal mol	1 Å	2 (Eq. 1) in that case) results
in steeper wells of the potential energy surface and, hence,

TABLE IV. Spanning Coefficients, Collectivity Indices, and Correlation
Coefficients for RCNMA Results

Protein
Spanning
coefficienta Collectivityb Correlationc

Adenylate kinase 0.98 0.48 0.84
Alcohol dehydrogenase 0.91 0.48 0.66
Aspartate aminotransferase 0.97 0.43 0.68
Calmodulin 0.99 0.78 0.75
Citrate synthase 0.91 0.14 0.86
CD kinase 0.74 0.31 0.60
HIV-1 protease 0.79 0.74 0.84
LAO binding protein 0.91 0.74 0.65
Thymidylate synthase 0.91 0.16 0.66
Tyrosine phosphatase 0.81 0.12 0.72
aSpanning coefficient (Eq. 5) of the conformational change in the subspace spanned by the
eigenvectors of the RCNMA.
bCollectivity index (Eq. 4) of the mode most involved in the conformational change (see
Table III).
cCorrelation coefficient of the magnitude of the C� displacements (Eq. 3), using the mode
most involved in the conformational change (see Table III).
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stiffer proteins. Similar findings have also been reported
by studies of Tama et al.22 and Li et al.,23 although it
should be noted that in these cases, the protein was
modeled by an atomic force-field representation in both the
rigid block and standard NMA approach. Thus, coarse-
graining alone already led to stiffer protein potential
energy surfaces. For modes with frequencies � 20 cm	1,
which are most interesting for describing biologically
relevant motions, RCNMA frequencies correlate very well
linearly with those from standard NMA (as indicated by r2

values � 0.99 obtained for all six proteins). The scaling
factors are in the range of 2.6–3.5 in these cases. Further-
more, they neither seem to depend on the structure or
sequence of the proteins, as also found in previous work,22,23

nor on the size of the largest rigid cluster identified by

FIRST analysis (data not shown). However, an inverse
correlation (r2 � 0.75) for the relative number of rigid
clusters is observed (Fig. 7), indicating that higher scaling
factors will result if the protein is coarse-grained into less,
but larger, rigid clusters.

It should be noted that these findings provide an attrac-
tive route to estimate approximate frequencies of low-
frequency normal modes from RCNMA via a scaling factor
determined from Figure 7 for a given relative number of
rigid clusters of the considered protein. These approximate
frequencies may possibly be used to estimate (free) ener-
gies of conformational protein changes along normal mode
directions, as recommended for flexible docking ap-
proaches65,66 or recently applied in a model to describe
conformational changes coupled to ligand binding.67 How-
ever, one should not expect a quantitative agreement. This
is particularly true for properties that depend also on
nonnegligible contributions from high-frequency modes,
such as vibrational entropies.23

CONCLUSION

NMA-based approaches have received renewed interest
in the biomolecular field over the past years because they
allow characterization of structural and dynamical proper-
ties and describe and predict even large-scale motions of
macromolecules. The trend has been particularly driven
by the development of physically motivated coarse-grained
models of macromolecules.13–15,17,20,21,24 These models
still capture the essential molecular properties that deter-
mine low-frequency collective movements of the systems.

In this spirit, we have introduced a two-step approach
for multiscale modeling of macromolecular conformational
changes in this study. Our approach is based on recent
developments in rigidity theory,34,36 elastic network
theory,14,20 and work by Sanejouand et al.21,22 First, static
properties of the protein are determined by decomposing
the molecule into rigid clusters by using the graph-
theoretical approach FIRST. For this step, the molecule is
represented on an atomic level. The rigid clusters are not
limited to consist of residues adjacent in sequence or
secondary structure elements as in previous work.22,23,26

Instead, they may span considerable parts of the macromol-
ecule, taking into account that nonlocal interactions influ-
ence the rigidity of a protein. Compared to decompositions
that result in rigid clusters of uniform size,24 this step also
identifies flexible links between rigid clusters. Hence,
these links may be modeled at a more fine-grained level
subsequently. This is particularly advantageous if the
movement is dominated by loop or fragment motions.
Second, dynamical properties of the macromolecule are
revealed by an RTB analysis, in which only rigid-body
motions are allowed for rigid clusters, whereas links
between them are treated as fully flexible.

For efficiency of our method, coarse-graining the protein
by rigid cluster decomposition leads to a decrease of the
dimensionality of the Hessian that needs to be diagonal-
ized in the second step up to a factor of 5. In turn, this
results in a remarkable reduction of memory requirements
and computational times by factors of 9 and 27 on average

Fig. 4. Displacements of C� atoms as a function of the residue number
for tyrosine phosphatase (a) and adenylate kinase (b). The displacements
were obtained either from experimentally determined conformational
changes between the open and closed forms of the proteins (straight line)
or by displacing atoms along the direction of the normal mode most
involved in this change (dotted line). The theoretical curve was scaled with
respect to the experimental one so that the area under the square of the
curves is identical.14 Residues located in rigid clusters, as determined by
FIRST analysis, are marked by vertical dashes at the top of the figures.
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and up to 25 and 125, respectively. Similar reductions of
the dimensionality have been obtained with the RTB
approach considering sequentially consecutive residues as
blocks.22,68 In the current approach, the protein is repre-
sented as an elastic network based on C� atoms in the RTB
step. However, an atomic force-field-based representation
of the macromolecule can also be included in the RTB step.

In this case, the reductions of computational requirements
are similar to the ones found in the this study (data not
shown).

For accuracy, our approach was tested on a data set of 10
proteins that show conformational changes on ligand
binding. It is encouraging that in directions and magni-
tudes of the motions, movements predicted by the RCNMA

Fig. 5. Spanning coefficients (Eq. 5) as a function of the frequencies of standard NMA vectors for the
proteins adenylate kinase (■), calmodulin (E), and thymidylate synthase (‚).

Fig. 6. Frequencies calculated with the RCNMA approach as a function of frequencies calculated with
standard NMA for six proteins. The phenomenological force constant � (Eq. 1) was set to values of 1 kcal mol	1

Å	2 in all cases. The dashed line indicates an ideal correlation.
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agree well with experimentally observed ones. The results
of our method are in general comparable with when no or a
uniform coarse-graining is applied and become superior if
the movement is dominated by loop or fragment motions.
Furthermore, very good agreement between predicted and
observed motions is also found for the rigid parts of the
macromolecules, in which atomic movements originate
from rigid body motions of the whole cluster. Finally, a
linear correlation has been found when comparing frequen-
cies determined by RCNMA with those from standard
NMA (up to 20 cm	1), which allows to estimate frequencies
of biologically relevant motions in a semiquantitative way
using our approach.

These findings lead to the following conclusions. 1) Even
if considerable parts of the proteins are considered to be
rigid (in the extreme cases, the largest rigid cluster
consists of more than 50% of all residues), motional
characteristics of the overall molecule are correctly pre-
dicted. This indicates the quality of the decomposition of
the protein into rigid and flexible regions by FIRST. 2)
Obtaining in general comparable and, in the case of loop or
fragment motions, even better results with a coarse-
grained protein representation compared with no or a
uniform coarse-graining provides an indication that explic-
itly distinguishing between flexible and rigid regions is
advantageous when using an elastic network model repre-
sentation of the protein. Two reasons may be given for this.
On the one hand, in the FIRST analysis, an all-atom
representation of the protein together with a more elabo-
rate representation of nonbonded interactions is used.
Thus, one may anticipate that flexible/rigid regions within
the protein are better characterized as when only interac-
tions of equal strength between C� atoms are considered.
On the other hand, using a more coarse-grained protein
representation in the RTB step leads to a less rugged
potential energy surface. This facilitates the modeling of
large-scale motions when using a harmonic approxima-

tion. 3) The fact that motions of atoms in rigid clusters are
well predicted by our approach confirms that collective
macromolecular movements may not require gross changes
in the internal structure of these clusters. This points to
the need to consider mobile protein parts (which may well
move as rigid clusters in total) in addition to flexible ones
(where changes in the internal structure of a collection of
atoms may occur) when modeling correlated motions. In
that respect, RCNMA differs from a recently published
approach.38–40 Here, protein flexibility is also analyzed by
FIRST initially. Then, however, only flexible regions are
explored by random-walk sampling of rotatable bonds for
generating available conformations.

Considering the success of our approach in describing
and predicting biologically relevant motions efficiently and
accurately, we hope that it will aid in the understanding of
the interplay between structure, dynamics, and function of
complex molecular systems. Further potential applica-
tions of our method include atomic-level molecular dynam-
ics simulations with amplified collective motions69 and
modeling of induced-fit effects in flexible docking ap-
proaches.
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APPENDIX
Rotations-Translations of Blocks Approach21,22

Given a coarse-grained representation of a protein in
terms of n rigid clusters (blocks), the dimensionality of the
Hessian matrix H can be reduced from 3N (with N being
the number of atoms or “particles” in the case of no rigid
cluster decomposition) to 6n by projecting H into the
subspace spanned by translation/rotation basis vectors of
the blocks according to

Hsub � PtHP (6)

Here, P is an orthogonal 3N � 6n projection matrix of the
infinitesimal translation/rotation eigenvectors of each
block23,70

PJ,j�

� � �mj / MJ��� � � 1,2,3

PJ,j�

� � �
�

�IJ���	3�,�
	1/2 �mj�rj � rJ

0�ε�� � � 4,5,6 (7)

J and j label blocks and atoms, respectively, and � the
translation (� � 1,2,3) and rotation (� � 4,5,6) of each
block. mj and rj are the mass and Cartesian coordinate of
atom j; MJ, IJ, and rJ

0 are the total mass, moment of
inertia, and center of mass of block J. � is the Kronecker
delta and ε is the permutation symbol. �, , � � {1, 2, 3}.

Diagonalizing Hsub yields approximate low-frequency
normal modes Usub and eigenvalues �.

Fig. 7. Scaling factor obtained by relating approximate RCNMA
frequencies versus frequencies from standard NMA as a function of the
number of rigid clusters with respect to the number of all residues for six
proteins. The squared correlation coefficient of the inverse correlation is
0.75.
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HsubUsub � Usub� (8)

Finally, atomic displacements can be obtained by expand-
ing back the eigenvectors Usub from the subspace spanned
by translation/rotation basis vectors of the blocks to the
Cartesian space (U).

U � PUsub (9)

Although the projection matrix P has a nominal dimen-
sion of 3N � 6n, it is a very sparse matrix, consisting only
of 3mJ � 6 nonzero elements for block J with mJ atoms.
The matrix H is also sparse because interactions between
“particles” are only taken into account up to a cutoff
distance in the elastic network model representation of the
macromolecules applied in this study (see below). Hence,
sparse-matrix representations were used in our implemen-
tation of the RTB method. We note that a more memory-
efficient implementation of the RTB approach has been
reported recently,23 in which only those elements of the
matrix H are computed on the fly, which are required for a
given block pair. With this, however, a significant speedup
can be expected for only those cases in which the matrix H
cannot be stored entirely in the computer memory. This
does not apply for the systems investigated in this study.
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