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There is growing interest in RNA as a drug target due to its widespread involvement in biological processes.
To exploit the power of structure-based drug-design approaches, novel scoring and docking tools need to
be developed that can efficiently and reliably predict binding modes and binding affinities of RNA ligands.
We report for the first time the development of a knowledge-based scoring function to predict RNA-ligand
interactions (DrugScoreRNA). Based on the formalism of the DrugScore approach, distance-dependent pair
potentials are derived from 670 crystallographically determined nucleic acid-ligand and-protein complexes.
These potentials display quantitative differences compared to those of DrugScore (derived from protein-
ligand complexes) and DrugScoreCSD (derived from small-molecule crystal data). When used as an objective
function for docking 31 RNA-ligand complexes, DrugScoreRNA generates “good” binding geometries (rmsd
(root mean-square deviation)< 2 Å) in 42% of all cases on the first scoring rank. This is an improvement
of 44% to 120% when compared to DrugScore, DrugScoreCSD, and an RNA-adapted AutoDock scoring
function. Encouragingly, good docking results are also obtained for a subset of 20 NMR structures not
contained in the knowledge-base to derive the potentials. This clearly demonstrates the robustness of the
potentials. Binding free energy landscapes generated by DrugScoreRNA show a pronounced funnel shape in
almost 3/4 of all cases, indicating the reduced steepness of the knowledge-based potentials. Docking with
DrugScoreRNA can thus be expected to converge fast to the global minimum. Finally, binding affinities were
predicted for 15 RNA-ligand complexes with DrugScoreRNA. A fair correlation between experimental and
computed values is found (RS ) 0.61), which suffices to distinguish weak from strong binders, as is required
in virtual screening applications. DrugScoreRNA again shows superior predictive power when compared to
DrugScore, DrugScoreCSD, and an RNA-adapted AutoDock scoring function.

INTRODUCTION

There is growing interest in RNA as a drug target for
antibacterial and antiviral treatment.1,2 Several reasons ac-
count for this. First, a distinct advantage of RNA targets over
protein ones is the slower development of drug resistance
in a highly conserved RNA motif.1 Second, in contrast to
DNA that solely acts as an “information storage device”,
numerous complex functions of RNA molecules have been
discovered besides being a passive mediator of genetic
information.3 As such, RNA serves as template (mRNA),
ribosome component (rRNA), and activated intermediate
(aminoacyl-tRNA) in protein syntheses.4,5 It also controls
gene expression and plays a vital role in the lifecycle of
retroviruses such as the HIV-1 virus6,7 or other pathogenic
viruses.8 Finally, most functions of RNAs require interactions
with RNA-binding proteins.9 Hence, many opportunities to
target specific RNA structures or protein-RNA interactions
exist. Third, unlike DNA, RNA forms complex three-
dimensional structures due to a much larger repertoire of
possible base pairings and tertiary structural motifs.10 The
displayed surface topography of these structures in terms of
pockets and deep grooves resembles that of protein structures.

In addition, “irregular” RNA motifs such as non-Watson-
Crick base pairs, base triples, and bulges provide a function-
ally rich environment for molecular recognition. Complex
recognition strategies can thus be exploited by small-
molecules binding to RNA.9

The steep increase in functional and structural knowledge
of RNA molecules calls for rational, structure-based ap-
proaches that lead to the development of novel antibacterial
and antiviral drugs. Although successful library screenings
for small molecules interfering with RNA functions have
been reported,11-13 the development of such hits into highly
specific effectors targeting distinct RNA folds is hardly
imaginable without a detailed structural and energetic
understanding of RNA recognition.9 Furthermore, the in-
creasing number of available RNA structures provides the
opportunity to apply virtual screening techniques14 as time-
and cost-efficient alternatives to experimental high-through-
put screenings.15-17

For these structure-based approaches to be successful,
appropriate docking and scoring methods have to be devel-
oped and evaluated. While the past 25 years have seen great
progress in the development of automatic docking tools to
predict protein-ligand interactions,18,19 much less has been
achieved in efficiently and accurately modeling RNA-ligand
interactions. The current approaches can be divided into three
different classes:
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(I) Computationally intense methodscombining docking
methods and molecular dynamics simulations. These ap-
proaches strive to build models for a small number of RNA-
ligand complexes but are too time-consuming for large-scale
screening applications.20-23 These methods will not be further
considered here.

(II) Methods originally developed for protein-based
drug design, which are subsequently applied to RNA. E.g.,
Kuntz and co-workers used the DOCK program to identify
small molecules with binding specificity to the RNA double
helix.24,25Likewise, Leclerc and Karplus identified favorable
RNA binding sites by the MCSS method, thereby making
use of nucleic acid parameters from the CHARMM force
field.26 In a virtual screening study, James and co-workers
successfully identified acetylpromazine as a lead compound
that binds to TAR RNA by a rigid DOCK screen and
subsequent flexible docking with ICM.16 Both methods are
well-known for predicting protein-ligand complexes. In-
terestingly enough, however, for finally ranking the com-
pounds RNA-specific regression-based scoring functions
needed to be developed based on very limited structural and
energetic knowledge of only 13 RNA-ligand complexes.
In a related validation study, Detering and Varani generally
concluded that it is possible to use the automated docking
tools DOCK and AutoDock developed for proteins to
increase the likelihood of discovering molecules in databases
that bind to RNA.27 However, DOCK was successful only
in the case of rigid aromatic ligands, whereas it performs
poorly with weak-binding ligands and with aminoglycosides.
Similarly, AutoDock fails on the complexes for which DOCK
performed worse. Very likely, this indicates a misbalance
between charged and nonpolar/aromatic interactions in both
protein-based scoring functions. Consequently, the highest
likelihood of identifying RNA-binding ligands from database
screens was only achieved by a successive application of
DOCK and AutoDock. Thus, although both studies provide
encouraging examples of the current scope of RNA-based
virtual screening, at the same time they point to shortcomings
in the description of the energetic determinants of RNA-
ligand binding.

(III) Applications Newly Developed for Scoring RNA-
Ligand Interactions. In an attempt to overcome the above-
mentioned shortcomings, Morley and Afshar developed a
new RNA-specific regression-based scoring function (“Ri-
boDock”).28 As in the case of the regression-based functions
by James and co-workers,15 however, a limited training and
validation set of only 10 RNA-ligand complexes was
employed to parametrize the function. Hence, the general
applicability and predictive power of this function remains
elusive.

The above considerations provided the incentive for
developing a knowledge-based scoring function to predict
RNA-ligand interactions in this study. To the best of our
knowledge, such an approach has not yet been reported. Here,
“knowledge-based” refers to deriving energetic information
from the statistical analysis of structural parameters of known
biomolecules or biomolecular complex structures.18,29Knowl-
edge-based scoring functions do not require accurate binding
affinity data for training as do regression-based ones. This
is clearly an advantage in those cases where only limited
data sets are available. Once established, the functions are
also easy to rederive on a larger data set. This is advanta-

geous in view of the currently steep increase of structural
knowledge about RNA. Knowledge-based functions have
been widely applied to score protein-protein,30 protein-
DNA,31 and protein-ligand interactions.31-38 In our hands,
the DrugScore approach has been proven successful already
for scoring34,39 and predicting40 protein-ligand complexes.
In part, this has been attributed to the implicit, well-balanced
consideration of several different types of interactions
occurring in protein-ligand complexes, such as polar
(including hydrogen bonding), charged, and nonpolar inter-
actions. Obtaining such a delicate balance is also considered
crucial for successfully predicting RNA-ligand complexes.9

Finally, following the idea that like forces should drive the
formation of protein-ligand complexes and small-molecule
assemblies, we also developed and successfully evaluated
knowledge-based potentials from small-molecule crystal data
(DrugScoreCSD) recently.41 Transferring this idea to the
problem of sparse data in the case of RNA-ligand com-
plexes, we anticipated that valuable information for scoring
RNA-ligand complexes can additionally be derived from
RNA-protein and DNA-protein complexes.

METHODS

Distance-Dependent Pair-Potentials and Binding Score.
For deriving the distance-dependent pair-potentials of the
new scoring function DrugScoreRNA, the same formalism is
applied as already described for the DrugScore scoring
function for protein-ligand complexes.34 Following an
inverse Boltzmann and modified Sippl approach,42 specific
interactions∆WT(l),T(n)(r) between ligand atom l of typeΤ(l)
and nucleic acid atom n of typeΤ(n), separated by a distance
r, can be obtained from the normalized radial pair-distribution
function gT(l),T(n)(r) and the normalized mean radial pair
distribution functiong(r):

gT(l),T(n)(r) is computed from occurrence frequencies
NT(l),T(n)(r) of atom pairs with types T(l) and T(n) according
to

4πr2dr is a scaling factor that takes into account the volume
of a shell with radiusr and thickness dr. DrugScoreRNA pair
potentials consider atom-atom interactions within a distance
range from 1 to 6 Å. The upper limit of 6 Å ensures that
only direct RNA-ligand interactions are considered but no
bridging water molecules. Furthermore, considering only
short-range interactions renders the use of volume correction
factors that account for occupied volume around a considered
atom32 unnecessary as these markedly differ only over large
distance ranges.38 The bin size dr is set to 0.1 Å.

Choosing a proper reference state is crucial to the
predictive power of knowledge-based scoring functions.43,44

In our case, the reference stateg(r) mimics a compact RNA-
ligand configuration with nonspecific interactions. Thus, the
reference state removes “zero-interaction” contacts from the

∆WT(l),T(n)(r) ) -ln
gT(l),T(n)(r)

g(r)
(1)

gT(l),T(n)(r) )
NT(l),T(n)(r)/4πr2dr

∑
r

(NT(l),T(n)(r)/4πr2dr)

(2)

DRUGSCORERNA J. Chem. Inf. Model., Vol. 47, No. 5, 20071869



distributions such that net potentials representing only
specific interactions are obtained. All other parameters were
chosen as described in ref 34.

The “binding score” for a complex of an RNA molecule
N and a ligandL is calculated as the sum of all occurring
atom-atom interactions.

Knowledge Base for Deriving Pair Potentials.RNA-
specific distance-dependent pair potentials are derived from
crystallographically determined nucleic acid-ligand and
-protein complexes using an in-house mySQL database that
contains structural information of all PDB entries (Schmidt,
E.; Derksen, S.; Gohlke, H. unpublished results). Initially,
only 50 crystallographically determined RNA-ligand com-
plexes were considered, with ligands containing between 6
and 50 non-hydrogen atoms. Metal ions were included as
part of the binding site to reproduce the ligand’s environment
as experimentally determined. However, only statistically
insignificant distribution functions could be derived. To
extend the knowledge base, NMR-derived RNA-ligand
complexes were considered in addition. This did not yield
potentials of satisfying predictive power, presumably, due
to the lower resolution of the experimental data. NMR-
derived structures were thus not considered any further.
Instead, we resorted to also take into account DNA-ligand
complexes, where similar interactions as in the RNA case
should occur. Finally, to even further strengthen our knowl-
edge base, we decided to also include nucleic acid-protein
and-peptide complexes: In almost half of the PDB entries
containing nucleic acids, proteins or peptide chains are
cocrystallized. In all cases, the complexes had been resolved
to at least 2.5 Å. In total, 670 nucleic acid complexes were
used to derive the distance-dependent pair potentials of
DrugScoreRNA. PDB codes of all complexes used for deriving
the potentials are listed in Table S1 in the Supporting
Information. Potentials were derived for all DrugScore
standard atom types, which are similar to the Sybyl atom-
type notation.45 See ref 34 for further details.

Validating the DrugScoreRNA Potentials.The predictive
power of the DrugScoreRNA potentials was assessed in terms
of their ability to reconstruct nativelike RNA-ligand com-
plex geometries in self-docking experiments, the funnel-
shapeness of the resulting energy landscapes, and the
correlation between experimentally determined binding free
energies and calculated binding scores (eq 4).

The data set used for docking consists of 31 noncovalent
RNA-ligand complexes where the ligands have druglike
characteristics (Table S2 in the Supporting Information). This
data set is by far the largest data set used up to now for
validating a RNA-ligand scoring function. It also comprises
all those complexes that have been used in the studies of
Detering et al.27 (14 complexes), Morley et al.28 (10
complexes), and Filikov et al.15 (5 complexes) for validation

purposes. Hence, results obtained with DrugScoreRNA for
subsets of these complexes can be directly compared to these
studies.

The AutoDock46 program generates complex geometries
by directly optimizing an energy or scoring function. It allows
supplying external scoring functions by the user.40,47 Ac-
cordingly, AutoDock was selected to test the performance
of DrugScoreRNA in guiding docking searches, with energy
grids computed from DrugScoreRNA potentials. Likewise,
energy grids were computed from DrugScore and Drug-
ScoreCSD for reasons of comparison. See ref 40 for further
details. Standard AutoDock potentials were used for con-
sidering intramolecular ligand energies during the docking;
however, the final ranking is determined only by intermo-
lecular energies. In the recent version 3.0.5 of AutoDock,
the Lamarckian genetic algorithm (LGA) has been used for
exploring ligand space. LGA runs were performed using
standard parameters provided by AutoDock, with 106 energy
evaluations performed in 100 independent runs using a
population size of 100 individuals.

The RNA structures were held rigid during the docking,
and no water molecules were taken into account. As an
interesting alternative, Moitessier et al.48 recently reported
docking to hydrated and flexible RNA. However, this
approach requires extensive experimental information (i.e.,
cocrystal structures of several ligands bound to the same
target) and was tested only for aminoglycosides bound to
the ribosomal A-site RNA. Thus, as also stated by these
authors, the transferability of the method to other classes of
molecules still needs to be assessed.48

Data Set Preparation for Docking Using the AutoDock
Energy Function. A subset of the validation data set was
used to assess the predictive power of the regression-based
energy-function of AutoDock. This scoring function was
modified according to Detering et al.,27 namely, solvation
parameters were added for RNA atoms, and nitrogen atoms
accepting and not accepting hydrogen bonds were separately
defined for the grid map calculation. After separating RNA
and ligand molecules, protons were added to the crystal
geometries using standard geometrical parameters. Partial
charges were assigned to the RNA using the Cornell et al.49

force field except for P atoms, for which increased charges
were applied according to Detering et al.27

Ligand Preparation. For all scoring functions tested
(DrugScore, DrugScoreCSD, DrugScoreRNA, and AutoDock)
the ligands were prepared in the same way using the Autotors
utility from the AutoDock suite of programs to assign
rotatable bonds. In addition, for AutoDock, Gasteiger-
Marsili atomic charges were assigned50 as implemented in
the program Antechamber from the Amber8 suite of pro-
grams.51

RESULTS AND DISCUSSION

Knowledge-based approaches have been widely applied
for analyzing protein-protein,30 protein-DNA,31 and protein-
ligand interactions.31-38 DrugScoreRNA is, to the best of our
knowledge, the first knowledge-based approach to score
RNA-ligand complexes. So far, it has been considered rather
unlikely to obtain statistically significant potentials due to
the small number of experimentally determined RNA-ligand
complexes. In fact, we could only derive statistically
insignificant distribution functions based on such data.

g(r) )

∑
T(l)

∑
T(n)

gT(l),T(n)(r)

||T(l)||‚||T(n)||
(3)

∆W ) ∑
l∈L

∑
n∈N

∆WT(l),T(n)(r) (4)
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Therefore, we decided to also include DNA-ligand com-
plexes as well as RNA/DNA-protein complexes in our
knowledge base. We anticipated that atom-atom interactions
in these systems are similar enough to those in RNA-ligand
systems. As with all empirical approaches, such a procedure
can only be validated by the predictive power and ability to
reproduce experimental data.

In the following, we will first compare nucleic acids-
derived knowledge-based potentials (DrugScoreRNA) to the
ones of DrugScore34 and DrugScoreCSD.41 We will then
evaluate their predictive power with respect to recognize
near-native geometries of RNA-ligand complexes, construct
funnel-shaped binding (free) energy surfaces, and predict
binding affinities.

Characteristics of Nucleic Acids-Based Pair Distribu-
tions and Potentials.The significance of knowledge-based
pair potentials increases with the amount of structural data
from which pair distribution functions (eq 2) are derived.
Previous experiences indicate that at least 500 interactions
(i.e., about 10 interactions per distance bin) are required per
atom-atom pair to obtain statistically significant poten-
tials.34,41 In that sense, the knowledge base is considerably
increased if the combined nucleic acid-ligand/protein com-
plexes are used instead of only RNA-ligand complexes. E.g.,
whereas in the latter case only 699 C.3-C.3 and 78 O.2-O.3
interactions would have been considered, these numbers
increased to 173 961 and 47 406, respectively, in the case
of the comprehensive data set. Yet, the occurrence frequen-
cies of pair contacts are still lower in many cases for
DrugScoreRNA compared to DrugScore or DrugScoreCSD.
Conversely, for interactions involving aromatic nitrogen,
phosphorus, or oxygen, much higher populated pair distribu-
tions are obtained. Considering the different chemical
compositions of nucleic acids, proteins, and small molecules,
this is not unexpected. These findings may already provide
a hint as to why DrugScoreRNA shows superior predictive
power in the case of RNA-ligand complexes compared to
DrugScore or DrugScoreCSD (see below).

Figures 1-3 show examples of pair potentials for interac-
tions between charged atoms of types N.3 and O. co2, polar
interactions between O.3 and O.3, and aromatic interactions
between C. ar and C. ar. At a first glance, the three potentials
show qualitatively similar shapes and relative positions of
the minima. Yet, quantitative differences in the potentials
are obvious that can be explained by the characteristics of
the knowledge base used for the potential derivation. As for
all three potentials at least 795 (in the case of N.3-O. co2),
7106 (O.3-O.3), and 16 692 (C. ar-C. ar) pair contacts were
available in the databases, the observed differences can be
considered significant. It has already been noted41 that pair
distributions derived from small-molecule crystal structures
show the most pronounced first and second maxima. This is
due to the fact that the resolution of such crystal structures
is much higher, and, accordingly, the uncertainties in atomic
coordinates are lower. In contrast, PDB-derived pair distribu-
tions are much more blurred. Accordingly, minima in the
pair potentials have in general a narrower shape in the
DrugScoreCSD case compared to DrugScoreRNA and Drug-
Score.

Pronounced differences are also visible with respect to the
depths of minima: whereas DrugScore and DrugScoreCSD

show rather similar well depths, this is true only in the case

of the N.3-O. co2 interaction for DrugScoreRNA (Figure 1).
In contrast, O.3-O.3 interactions are much less favorable in
the DrugScoreRNA case (∆W ≈ -2000) compared to Drug-
Score and DrugScoreCSD (∆W ≈ -4000) (Figure 2). Con-
versely, C. ar-C. ar interactions are more favorable in the
former case (∆W ≈ -2500 (DrugScoreRNA); -500 (Drug-
Score, DrugScoreCSD)) (Figure 3). These findings reflect the
fact that polar interactions between ligands and sugar
moieties are less frequent in nucleic acids (and, hence, are
interactions to atoms of type O.3), whereas (stacking)
interactions between ligands and bases are a hallmark of
molecular recognition involving RNA and DNA.1,9

Predicting Near-Native Ligand Geometries. For 31
RNA-ligand complexes, near-native ligand geometries were
predicted with AutoDock, using potential fields of Drug-
ScoreRNA, DrugScore, DrugScoreCSD, and an RNA-adapted
AutoDock scoring function27 as objective functions. We note
that this is the largest validation data set of RNA-ligand
complexes used to date. The results are summarized in Table
1, and details of the docking results are listed in Table S3 in
the Supporting Information.

Encouragingly, using DrugScoreRNA, in 42% of the cases
a “good” solution (rmsd (root mean-square deviation)e
2.0 Å to the native structure) is found on the first scoring
rank. Compared to the results of the other three functions,
this is an improvement of 44% in the case of DrugScoreCSD,

Figure 1. Distance-dependent pair distribution (a) and pair potential
(b) for charged interactions between atoms of types N.3 and
O.co2: DrugScoreRNA (straight line), DrugScore (dashed), and
DrugScoreCSD (dashed-dotted).

DRUGSCORERNA J. Chem. Inf. Model., Vol. 47, No. 5, 20071871



62% in the case of AutoDock, and 120% in the case of
DrugScore. It is not unexpected that DrugScore (which has
been derived using solely protein-ligand data) performs
worst, which demonstrates a database dependence of the
statistical potentials.52 In turn, it is intriguing to note that
DrugScoreCSD performs slightly better than the RNA-adapted
AutoDock scoring function. Given that DrugScoreCSD also
shows convincing predictive power in the case of protein-
ligand complexes,41 information derived from small-molecule
crystals is apparently general enough to also score intermo-
lecular interactions in systems that are only distantly related.
DrugScoreRNA also performs best if docking solutions with
smaller rmsd thresholds (1.0 Å or 1.5 Å) are considered.
Still, the results fall short when compared to protein-ligand
docking where scoring functions achieve success rates
between 70%41 and 90%53 in recognizing a good docking
solution on the first rank. Two reasons can be anticipated
for this: (i) the amount of data used to derive DrugScoreRNA

may still not be sufficient to yield a robust scoring function
and (ii) predicting RNA-ligand geometries may be more
difficult due to the prevalence of charged and aromatic
interactions, which requires a better balance of the energy
contributions.

An example for the latter case is given by a high affinity
aptamer-theophylline complex (PDB code 1eht)54 (Figure
6a). In the native structure, the ligand is bound to the well-
ordered pocket by stacking interactions to C8 and A7,
whereas only a weak hydrogen bond to U24 or even repulsive
interactions between the carbonyl atoms and the RNA
backbone can be observed. Thus, there are no strong directed
interactions that lock in the ligand, and the observed pose
appears to result from a combination of (subtle) energy
contributions. DrugScoreRNA instead scores best a solution

where the ligand is flipped by 180°. Given that the stacking
interaction remains very similar and considering the forma-
tion of strong hydrogen bonds between O2 of theophylline
and N3 of U24 as well as O6 of theophylline and N4 of
C22, this pose intuitively seems as plausible as the native
one.

At this point it is interesting to contrast the performance
of DrugScoreRNA for aptamer complexes (such as the
theophyllin complex 1eht), which were evolved to fit to a
ligand, to those RNA targets for which small molecules have

Figure 2. Distance-dependent pair distribution (a) and pair potential
(b) for the polar interaction between atoms of types O.3 and O.3:
DrugScoreRNA (straight line), DrugScore (dashed), and Drug-
ScoreCSD (dashed-dotted).

Figure 3. Distance-dependent pair distribution (a) and pair potential
(b) for the aromatic interaction between atoms of types C.ar and
C.ar: DrugScoreRNA (straight line), DrugScore (dashed), and
DrugScoreCSD (dashed-dotted).

Table 1. Docking Results for 31 RNA-Ligand Complexesa

proportion of complexes exhibiting rmsd

<1.00 Å <1.50 Å <2.00 Å

DrugScoreRNAb 16.13 29.03 51.61
DrugScoreRNAc 9.68 19.35 41.94
DrugScoreb 19.35 25.81 48.39
DrugScorec 9.68 12.90 19.35
DrugScoreCSDb 12.90 38.71 54.84
DrugScoreCSDc 6.45 9.68 29.03
Autodockb 22.58 45.16 70.97
Autodockc 6.45 12.90 25.81

a The percentage of complexes found below a given rmsd from the
native structure is shown.b Proportion of complexes for which at least
one docking solution with the given rmsd was computed irrespective
of the scoring rank.c Only the docking solution found on the first
scoring rank is considered.

1872 J. Chem. Inf. Model., Vol. 47, No. 5, 2007 PFEFFER AND GOHLKE



evolved as ligands.55 An example for the latter case if given
by the ribosomal decoding site in complex with gentamicin
(PDB code 1byj)56 (Figure 6b). Here, complex formation
mainly occurs by polar interactions between amino and
hydroxyl groups of the ligand and phosphate and polar base
atoms of the RNA, whereas only the alicyclic purposamine
moiety of gentamicin stacks above the base moiety of G1491.

Encouragingly, the best scored docking solution deviates by
less than 2 Å, with the garosamine moiety deviating the most.
This indicates that DrugScoreRNA properly scores the network
of polar interactions in this case, despite the rather open
binding site compared to the aptamer-theophylline case.

Overall, of the 31 RNA-ligand complexes of our valida-
tion data set, 13 are formed by aptamers, whereas 18 involve
natural RNA targets. The mean rmsd of a docking solution
found on rank one is 2.1( 0.9 Å for the former class and
2.8 ( 1.5 Å for the latter. Likewise, in the aptamer case a
“good” docking solution is found in 54% of the cases on
the first rank, whereas a “good” docking solution is found
only in 33% of the cases of RNA targets from biological
sources. Thus, DrugScoreRNA performs better for aptamer
targets, although the limited number of samples precludes a
definite answer. This finding is not unexpected in view of
the known differences in the characteristics of binding
pockets of these two target classes: as aptamers bind their
ligands by adaptive recognition, the intricate encapsulation
of large parts of the ligand by the nucleic acid is the basis
for specific recognition of the cognate ligand.55 In turn,
natural RNA was optimized with respect to multiple aspects

Figure 4. Computed scoring values of docking solutions using
DrugScoreRNA as a function of the rmsd from the native structure:
1pbr (panel a) and 1fyp (panel b). Small rmsd values denote near-
nativelike RNA-ligand configurations.

Figure 5. Correlation between experimentally determined binding
free energies and scores calculated by DrugScoreRNA of 15 RNA-
ligand complexes. The correlation coefficient isRS ) 0.61.

Figure 6. (a) Aptamere-theophylline complex (PDB code 1eht).
The two base-paired nucleotides C8 and A7 that form a platform
in the well-formed binding pocket above which theophyllin stacks
are depicted in magenta. (b) Ribosomal A site-gentamicin complex
(PDB code 1byj). G1491 above which the purposamine moiety
stacks is depicted in magenta; RNA residues that are involved in
polar interactions are depicted in blue. In both cases, the experi-
mental ligand pose is given in light gray, and the docking solution
ranked first by DrugScoreRNA is depicted in green.

DRUGSCORERNA J. Chem. Inf. Model., Vol. 47, No. 5, 20071873



of their cellular functions, trading off specificity in ligand
binding for additional functions. The finding also parallels
results from protein-ligand docking. Here, the highest degree
of docking accuracy is found for complexes with buried
binding pockets, too, because the best pose for a given ligand
is more unequivocally defined in a sterically constrained
site.57

When considering the percentage of docking solutions for
which a good solution has been generated in 100 different
docking runsirrespectiVe of the scoring rank, the AutoDock
scoring function outperforms the knowledge-based potentials
(71% vs 48-55%). However, in only 36% ()26/71%) of
these cases a good docking solution can also be recognized
by the AutoDock scoring function on the first rank. In
contrast, this is true in 81% ()42/52%) of such cases for
DrugScoreRNA. Thus, DrugScoreRNA displays a significantly
higher relatiVe success rate of recognizing good solutions,
in addition to showing a much higherabsolutesuccess rate
of generating good docking solutions on the first rank (as
discussed above). This also holds compared to DrugScoreCSD

(53%) and DrugScore (40%). This finding thus suggests a
two-step approach to combine the benefit of both functions
in the future: First, the RNA-modified AutoDock scoring
function is used for generating ligand geometries. Subse-
quently, the poses are scored in a postprocessing step by
DrugScoreRNA. Analogous approaches have been described
in the field of protein-ligand docking.34,41 We have not
pursued such an approach in this study.

Furthermore, we compared our docking results to those
described by Detering et al.,27 Morley et al.,28 and Filikov
et al.15 (Table 2). In each case, only those complexes were
analyzed that were also part of the data set used in the
respective study. In all cases, DrugScoreRNA performed
superior to the other approaches: the success rate of finding
a good docking solution on the first rank is at least 30%
higher. Although these comparisons are based on rather small
data sets (e.g., only five complexes in the case of Filikov et
al.15), which limits the statistical significance, we consider
this result a convincing demonstration of the predictive power
of our scoring function.

Twenty out of the 31 complexes in the validation data set
are NMR structures and, thus, have not been included in the
knowledge-base used to derive DrugScoreRNA. These com-
plexes can be considered an “external test set” because their
docking is not influenced by any training effects. With
DrugScoreRNA, a good docking solution is predicted on the
first rank for 60% of these complexes, which is even higher
than in the case of the total data set. In our view, this clearly
demonstrates the robustness of the derived potentials.

Analysis of Binding Energy Landscapes.The reduced
steepness of knowledge-based potentials compared to force-
field-based or empirical scoring functions has been recog-
nized as an advantage in docking,53 as the former functions
are more robust to small changes in a receptor conformation
and lead to less rugged binding energy surfaces. Along these
lines, Wang et al.58 have analyzed the abilities of scoring
functions to construct funnel-shaped (free) energy surfaces
of protein-ligand complexation.59-61 This is based on the
reasoning that an ideal scoring function not only should
recognize near-native docking solutions reliably but also
should produce an energy surface that is smooth as to not
impair the efficiency of conformational sampling.

The Spearman correlation coefficientRS
62 was used as a

quantitative measure to determine the correlation between
the rmsd value and the binding scores of docking solutions
by these authors. Although not sufficient to comprehensively
define the funnel-shapeness of the energy surface due to the
high-dimensional character of the latter, such a correlation
was assumed to be at least necessary for a funnel to exist.
Here, we adopt the same measure. Cumulative occurrences
of RS values calculated for all docking solutions of the
RNA-ligand complexes are given in Table 3. Figure 4
exemplarily shows binding score vs rmsd plots of the
complexes 1pbr (RS ) 0.68) and 1fyp (RS ) 0.64).

DrugScoreRNA yieldsRS values between 0.60 and 0.80 (no
significant numbers are obtained for higherRS values) for
23 out of 31 cases (74%), whereas the second best function
AutoDock only provides these funnel-like shapes in 52% of
the cases. Dockings applying DrugScoreRNA can thus be
expected to converge faster to the global minimum than if
the other knowledge-based approaches or the AutoDock
scoring function is used. Not unexpectedly, this trend
parallels the prediction of good docking solutions on the first
rank (see above), where DrugScoreRNA also outperforms the
other approaches.

Binding Affinity Estimation. Finally, we evaluated the
capability of DrugScoreRNA to estimate binding affinities.
Correctly ranking different ligands with respect to their
binding affinity is of utmost importance for virtual screening
and de novo design. Yet, reliably estimating binding affinities
is still a major challenge in structure-based drug design.

Figure 5 depicts DrugScoreRNA scores of the best ranked
docking solutions vs experimental binding free energies for
15 RNA-ligand complexes (see also Table S4 in the
Supporting Information). We consider this a more stringent
test than estimating binding affinities for crystallographically
determined RNA-ligand configurations. As reliable affinity
predictions can only be expected for near-native ligand poses,
in our case successful predictions will also depend on the
capability of DrugScoreRNA to identify good docking solu-
tions. At the same time, our test mimics a “real-life scenario”

Table 2. Comparison of DrugScoreRNA with Three Other
RNA-Ligand Scoring Functionsa

Filikov et al.b Detering et al.c Ribodockd

Respective function 0.00 42.85 50.00
DrugScoreRNA 80.00 71.43 90.00

a The percentage of complexes is given for which a docking solution
with rmsd < 2.0 Å from the native complex was found on the first
scoring rank. For all comparisons only the complexes used by the
respective scoring functions are also considered by DrugScoreRNA.
b Docking results for 5 RNA-ligand complexes.15 c Docking results
for 14 RNA-ligand complexes.27 d Docking results for 10 RNA-
ligand complexes.28

Table 3. Correlation between rmsd Values and Docking Scores

cumulative occurrence ofRS
a

g0.20 g0.40 g0.60 g0.80

DrugScoreRNA 74 48 23 0
DrugScore 61 32 6 6
DrugScoreCSD 61 23 13 3
AutoDock 55 32 16 3

a In %.

1874 J. Chem. Inf. Model., Vol. 47, No. 5, 2007 PFEFFER AND GOHLKE



in which usually no experimental structure is available for
the affinity prediction.

A fair correlation between experimental and predicted
values is found, as is corroborated by a Spearman rank
correlation coefficient ofRS ) 0.61. No over- or underpre-
diction of particular ligand classes is observed, and the
prediction accuracy is similar over the whole range of
experimental binding free energies. The prediction accuracy
is not yet sufficient for ligand optimization. However, the
demonstrated predictive power suffices to distinguish weak
from stronger binders, as is required in virtual screening
applications. When compared to the other three scoring
functions (DrugScore:RS ) 0.45; DrugScoreCSD: RS ) 0.47;
AutoDock: RS ) 0.43), DrugScoreRNA clearly shows a
superior predictive power for estimating binding affinities.

It has been noted repeatedly in the case of protein-ligand
complexes that binding affinities scale rather well with the
molecular weight of the ligands.41,53 In fact, affinity predic-
tions purely based on the ligand’s molecular weight have
given better results than many scoring functions.41 This does
not hold for the RNA-ligand complexes investigated here:
the correlation between the ligand mass and the affinities
yields an RS of 0.29. Compared to the DrugScoreRNA

predictions, this correlation is much weaker.

CONCLUSION

Binding of small-molecules to RNA is governed by a
delicate balance of electrostatic forces and stacking interac-
tions.9 Further contributions may arise from water-mediated
contacts and binding to metal ions. This broad spectrum of
enthalpic and entropic determinants of molecular recognition
involving RNA requires a well-balanced consideration of
several different types of interactions when it comes to
scoring RNA-ligand complexes.9 Knowledge-based ap-
proaches can provide such a delicate balance, if the database
they are derived from is sufficiently large and appropriately
represents the systems of interest.

Encouraged by our previous experiences in the field of
protein-ligand complexes in this regard, here, we have
developed the first knowledge-based scoring function to
predict RNA-ligand interactions, DrugScoreRNA. Based on
the concept and formalism of DrugScore, the novel function
was derived from 670 crystallographically determined nucleic
acid-ligand and nucleic acid-protein complexes. That way,
the problem of sparse data in the case of RNA-ligand
complexes is overcome such that statistically significant
potentials are obtained for most of the pair interactions
considered. These pair interactions show characteristic
atom-atom interactions for RNA-ligand systems that are
quantitatively different from protein-ligand- and small-
molecule-derived potentials.

When applied as an objective function in docking to a
data set of 31 RNA-ligand complexes, the predictive power
of DrugScoreRNA is demonstrated. We note that this data set
is the largest one used for such a validation to date.
DrugScoreRNA succeeds in predicting good docking solutions
on the first scoring rank in 42% of the cases and outperforms
DrugScore, DrugScoreCSD, and a modified AutoDock scoring
function. When compared to three other RNA-ligand
scoring functions for smaller subsets of the test data,
DrugScoreRNA also shows superior performance.

As one of the reasons for DrugScoreRNA’s success in
docking the fact may be considered that the binding (free)
energy landscape obtained by these potentials is more funnel-
shaped than in the case of the other knowledge-based scoring
functions or AutoDock. This is expected to lead to a faster
convergence of the dockings to a global minimum or, phrased
differently, a reduced likelihood for the configurational search
to get stuck in a local minimum.

Finally, binding scores predicted by DrugScoreRNA show
a fair correlation (RS ) 0.61) with experimental binding free
energies. We stress that only docking solutions found on the
first scoring rank were used for the affinity predictions but
no experimental structures. This procedure complies with a
“real-life scenario” for virtual screening. When compared
to the other knowledge-based scoring functions or the
modified AutoDock scoring function, DrugScoreRNA clearly
performs best. Yet, the prediction accuracy is still not
sufficient for ligand optimization, and more work is needed
in this area.

Nevertheless, we consider the success of DrugScoreRNA

convincing, and it is our hope that DrugScoreRNA will become
a valuable tool for the structure-based development of RNA
ligands.
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