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1 INTRODUCTION, MOTIVATION,
AND EARLIER DEVELOPMENTS OF THE
DNAZYME TECHNOLOGY

DNA enzymes, also known as DNAzymes (Dz), are syn-
thetic high-precision biocatalysts that have been identified
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by in vitro selection three decades ago.1 Dz are usually
short, single-stranded DNAmolecules that catalyse chem-
ical reactions through their specific three-dimensional
structure.2 Due to their enormous therapeutic potential,
particular interest has been invested in RNA-cleaving
Dz, such as the 8–17 Dz and 10–23 Dz2. In general,
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F IGURE 1 Schematic overview of the DNAzyme technology, its potential improvements via rational design, and simulated effects of
improved variants. Plots in a+b) show time-dependent cellular mRNA levels for two different mRNAs as experimentally determined in ref.3

(black circles). Lines represent data of the herein-developed kinetic model to simulate the effects of DNAzyme treatment on the respective
mRNA levels (see the text and Supporting information for more details). Red curves assume cleavage rates observed in vitro for a classical
10–23 Dz variant.4 Blue curves show the potential impact of a 6-fold increased cleavage rate as observed for a rationally improved Dz variant.4.

these DNAzymes share a modular architecture compris-
ing a (conserved) catalytic loop sequence and adaptable
substrate binding arm sequences that, following specific
design guidelines, can be modified to bind virtually any
given target RNA with high selectivity (Figure 1).

1.1 DNAzymes in clinical studies

A considerable number of Dz variants have been inves-
tigated in preclinical studies, but very few have entered
clinical trials. Notably, the handful of Dz-based drug can-
didates that entered clinical trials share their catalytic
core sequence with the original 10–23 Dz. Three of these
Dz (SB010, SB011, and SB012) have been developed by
sterna biologicals GmbH to target different roles of the
transcription factor GATA-3. SB010 targets GATA-3 as an
important transcription factor in the allergen-driven Th2
molecular endotype of asthma. In a double-blind phase
IIa study (NCT01743768) with 38 male patients suffer-
ing from mild allergic asthma, the orally inhaled SB010
attenuated the mean late asthmatic response by 34% and
the early asthmatic response by 11% with no notewor-

thy differences in adverse events to the placebo group.5
A second phase IIa study with SB010 in moderate to
severe asthma started in 2021 (Sterna Biologicals GmbH).
Topically medicated SB011 exploits the role of GATA-3
in lesional skin in patients with atopic eczema and is
currently being studied in a phase IIa double-blind clin-
ical trial (NCT02079688). SB012, targeting GATA-3′s role
in inflammatory cytokine production in patients with
ulcerative colitis,6 is currently studied in a phase IIa
double-blind clinical trial (NCT02129439) for intrarectal
application.
The remaining Dz-drug candidates that have entered

clinical trials are Dz1 and Dz13. Dz1 targets the latent
membrane protein-1 (LMP1) mRNA of the Epstein–Barr
virus (EBV) in patients with nasopharyngeal carcinoma
(NPC). A clinical randomised double-blind study on
40 NPC patients in conjunction with radiation therapy
resulted in increased tumour regression compared to the
control group with only radiotherapy, an undetectable
level of EBV DNA copies in plasma samples, and no toxic
side effects in patients.7 Dz13 targets the mRNA of the
transcription factor c-Jun involved in basal cell carcinoma
(BCC). In a first-in-human phase I trial addressing the
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safety and tolerability of intratumorally injected Dz13 in
patients with BCC, Dz13 lipoplex resulted in the reduction
of tumour depth with no observed toxic side effects.8
Overall, the clinical data indicate that Dz treatments are

safe without apparent side effects. Still, none of the candi-
dates have entered clinical phase III level, and reasons for
the apparent discontinuation of some clinical trials have
not been published.

1.2 DNAzymes for antiviral strategies

As RNA can be regarded as the heart of virus replica-
tion, the unique antiviral potential of RNA-cleaving Dz
is imminent. Commonly used viral inhibitors often suffer
from toxicity, drug resistance, and ecotoxicological con-
sequences. Nucleic acid-based therapies can tackle these
shortcomings. Data to utilise Dz for anti-viral therapy in
the context of influenza A virus, Japanese encephalitis
virus, human rhinoviruses, respiratory syncytial virus, and
SARS-CoV-2 support the concept. The Dz13 has yielded
a lower pulmonary titre 6 days post infection of the
virus and a better survival rate 15 days post infection in
mice infected with Influenza A virus.9 Likewise, during
Japanese encephalitis virus infection, 3DzG reduced viral
titre in mouse brain 72 h post infection and also provided
increased survival until 14 days post infection.10 Further-
more, treatment with DNAzymes during rhinovirus infec-
tion caused a reduced virus copy number in sinonasal tis-
sue samples.11 Respiratory syncytial virus (RSV) infection
was successfully inhibited by DZn1133 through decreased
transcription and expression of F viral gene-fusion protein,
reducing the RSV yield by about 7 log units and protect-
ing more than 90% of RSV-infected Hep-2 cells from a
cytopathic effect.12
The emergence of the COVID-19 pandemic underscores

the importance of more dynamic tools to counteract viral
infections. Sufficiently bioactive DNAzymes could consti-
tute a new toolset for virus-specific antiviral therapeutics.
Their site-specific response also safeguards non-targeted
cellular RNA from the action of DNAzymes. Furthermore,
the binding arms can be modified to bind to different seg-
ments of the viral RNA, such as shown in cell culture
experiments by the FR6_1 XNAzyme targeting COVID-
19,13 increasing the target range to effectively suppress
infection and impede resistance.

1.3 What is holding us back?

Despite the above outlined general potential and individ-
ual successes, the catalytic activity of 10–23 Dz variants
requires the presence of divalent-metal-ion cofactors such

as Mg2+; a feature that regularly leads to reduced activity
under cellular conditions.14–18 Whilst notable improve-
ments have been made (e.g., reviewed in19), the observed
low bioactivity has been limiting the DNAzyme technol-
ogy for decades. Furthermore, so far clinical strategies
have focused on topical application procedures, and stud-
ies focusing on administration via the systemic route are
sparse, constraining the general applicability of the Dz
technology.
Comparing Dz variants with identical core sequences

but different arm sequences also highlights an often-
neglected impact of the arm sequence on the Dz activity.
This is regularly observed even under defined in vitro
conditions using minimal RNA sequences, where the Dz
activity can easily vary by one order of magnitude due to
(un)favourable arm-sequence variations. This observation
as well as a reliable prediction of target-site accessibility in
the context of the full-length RNA substrate is often inad-
equately incorporated in current Dz-design procedures.
Consequently, we envision that the field will consider-
ably benefit from improvements in (i) target-site selection
algorithms and (ii) the usage of standardised experimental
conditions for future studies. For the latter, we recommend
using the conditions applied in, for example, ref.,20 for
future in vitro studies as well as standardised in cellulo
systems. This will be necessary to build a sufficiently large
comparative database for improved pattern recognition in
Dz design.

1.4 The coming of age of the Dz
technology

The in vitro evolution of the 10–23 Dz2 and sub-
sequent comprehensive systematic modifications thor-
oughly explored the possibilities offered by the chemical
space of natural nucleotides. Therefore, non-natural chem-
ical modifications are a logical next step to overcome
persisting limitations and further optimise the catalytic
activity, metal-ion independence, and biostability. This
development is accelerated by progress in the closely
related field of antisense oligonucleotides (ASO) tested
in numerous clinical trials.21 For DNAzymes, modifica-
tions in the arms are considered to improve cellular
lifetimes and annealing to the template RNA, whereas
modifications in the catalytic loop aim to improve the cat-
alytic activity, reduce Mg2+ dependency, and/or enable
orthogonal activation.4,13,22,23 Backbone and sugar modifi-
cations such as phosphorothioates (PS), FANA (2′-deoxy-
2′-fluoro-arabinonucleic acid), and 2′OMehave been intro-
duced and showed improved nuclease resistance and/or
catalytic activity.20,24–27 However, the vast chemical space
of nucleobase modifications is yet to be fully explored,
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which has been obstructed by an insufficient molecular
understanding.
Our recent mechanistic insights into the 10–23 Dz

opened new routes in the structure-guided rational design
of functionalised nucleobase residues.4,28 Exemplary for
this approach is the 6-thio-dG14 variant, which increases
the cleavage rate by 6-fold via supposedly reducing inactive
conformations.4 Accordingly, a pressing question arises:
are the currently developed Dz variants sufficient for a
more generalised therapeutic platform?
To get a better overview of the bioactivity required to

downregulate commonly occurring cellular mRNA lev-
els, we here simulated how Dz activity relates to cellular
mRNA degradation. We built a kinetic model for the
time course of the total mRNA level resulting from gene
transcription, RNA maturation as well as natural and Dz-
mediated RNA degradation. To do so, we recalculated
the time-dependent kinetic models of 254 genes reported
before3 and added a term for Dz-mediated degradation
and, optionally, degradation of the Dz itself. The approach
and generated data are described in detail in Supporting
information. The simulations help to understand how an
increased cleavage rate, such as observed for the 6-thio-
G14 variant in vitro,4 could propagate to the cellular level
of the targeted mRNA (Figure 1a,b; red vs. blue curves).
Under the applied conditions, the improved variant, unlike
the non-modified Dz, could flatten the Socs3 mRNA levels
already at a 10-fold lower dosage (Figure 1a). For the Daxx
system, the effects are even more critical, suggesting that
therapeutic effects involving a particular mRNA expres-
sion behaviourwill strongly depend on theDz cleavage rate
(Figure 1b, also see Supporting information for data on all
other mRNA transcripts).
In general, new variants with further increased bioac-

tivity and biostability will reduce the required Dz con-
centrations, which should lower immune response and
facilitate administration. Due to the Dz’s comparatively
small molecular size and high stability, most formula-
tions developed for ASO, siRNA, and/or mRNA delivery
should be well applicable also for Dz treatment. Still,
suitable formulations capable of delivering the required
Dz concentrations and cell type-specific reduced activities
may restrict certain applications and will require further
optimisation.

2 CONCLUSIONS

In summary, persisting limitations of theDz technology for
therapeutic applications are on the verge of being resolved.
The recent progress is largely based on the usage of
non-naturalmodifications for (i) improvedDz arm compo-
sitions enhancing cellular stability and RNA interactions,

(ii) advanced experimental screening of (non-natural) cat-
alytic core sequences, and (iii) structure/dynamics-guided
rational design strategies. Due to its favourable perfor-
mance under physiologically relevant conditions, we here
focused on the 10–23 types of Dz. However, progress on
other RNA-cleaving Dz types (e.g.,24,29–32) may add addi-
tional features to the field. Bringing together the progress
in different areas, it can be anticipated that new Dz
variants with further increased bioactivity will be itera-
tively developed. Our Gedanken experiment suggests that
increased cleavage rates will be particularly important for
specific mRNA transcription behaviours (Figure 1b), and
that transfer of the observed (in vitro) catalytic efficiency
of the current Dz variants to the target cells should be
sufficient for a wide range of therapeutic applications.
The currently developed new generation of Dz shows
great promise in realising this task and, in combina-
tion with appropriate selection algorithms and delivery
systems, should offer a robust modular platform capa-
ble of downregulating a broad spectrum of target RNAs.
Just in time for its 30th birthday, the Dz technology is
hence coming of age, paving the way for innovative ther-
apeutic approaches in areas as diverse as animal health,
plant protection, and human viral/bacterial infections,
cancer, neurodegeneration, personalised medicine, and
rare diseases.
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